Nav: Home

Extracting the content of single living cells

July 14, 2016

ETH researchers have developed a method using a nanosyringe whose tiny needle is able to penetrate single living cells and extract their content. The technology can be used for cell cultures, for example, in order to investigate the interior of the cells. This allows scientists to identify the differences between individual cells at the molecular level, as well as to identify and analyse rare cell types. "Our method opens up new frontiers in biological research. It is the start of a whole new chapter, so to speak", says Professor Julia Vorholt from the Department of Biology.

The new method has numerous advantages: researchers can sample individual cells of a tissue culture directly in the petri dish. "This means we can study how a cell affects its neighbouring cells", says Orane Guillaume-Gentil, a postdoc in Professor Vorholt's research group. This type of investigation is not possible using conventional methods, as molecular analyses generally require the cells to first be physically separated and then destroyed.

Cells remain alive

On top of that, the microscopic needle can be controlled so precisely that scientists are able either to harvest the content of the nucleus or collect the intracellular fluid surrounding the nucleus, the cytosol. Last but not least, the researchers can determine the amount of intracellular material they extract with incredible accuracy, down to one tenth of a pictolitre (one trillionth of a litre). By way of comparison: the volume of a cell is 10 to 100 times bigger.

The cells from which molecules were extracted remain alive, so researchers are free to sample the same live cell several times in order to analyse its RNA and proteins - and possibly even metabolites in the future. "We were surprised to find that the cells we examined survived even after we had extracted most of their cytosol", says ETH professor Vorholt. This underscores the amazing plasticity of biological cells.

Applications expanded

The new cell extraction method is based on a microinjection system developed at ETH over the past years, the FluidFM, which is the "world's smallest automated syringe". This already gave biologists a way to inject substances into individual cells. FluidFM and its nanosyringe were also ideal for gently sucking up cells through underpressure and relocating them elsewhere.

Professor Vorholt and her research group took the system a stage further, allowing material to be extracted from the cell compartment as well. "One particularly important aspect was to find a suitable coating for the needle, to prevent fouling by cell material", comments Guillaume-Gentil. Another challenge was to adapt the analysis techniques used for the cell molecules - for measuring enzyme activity, for example - to the minute measurement volumes. The latest development of the system was carried out in close collaboration with researchers working under Tomaso Zambelli, Privatdozent at ETH Zurich's Department of Information Technology and Electrical Engineering, Martin Pilhofer, Professor at the Institute of Molecular Biology and Biophysics, and the ETH spin-off Cytosurge, which markets the FluidFM technology.
-end-
Reference

Guillaume-Gentil O, Grindberg RV, Kooger R, Dorwling-Cater L, Martinez V, Ossola D, Pilhofer M, Zambelli T, Vorholt JA: Tunable single-cell extraction for molecular analysis. Cell 2016, 166: 506-516, doi: 10.1016/j.cell.2016.06.025 [http://dx.doi.org/10.1016/j.cell.2016.06.025]

ETH Zurich

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...