Surface composition determines temperature and therefore habitability of a planet

July 14, 2016

Astronomers from KU Leuven, Belgium, have shown that the interaction between the surface and the atmosphere of an exoplanet has major consequences for the temperature on the planet. This temperature, in turn, is a crucial element in the quest for habitable planets outside our Solar System.

In the quest for habitable planets outside our Solar System - also known as exoplanets - astronomers are currently focusing on rocky planets that don't look like Earth. These planets orbit so-called M dwarfs - stars that are smaller than our Sun. In our universe, there are many more M dwarfs than there are sun-like stars, making it more likely that astronomers will discover the first habitable exoplanet around an M dwarf. Most planets orbiting these M dwarfs always face their star with the same side. As a result, they have permanent day and night sides. The day side is too hot to make life possible, while the night side is too cold.

Last year, KU Leuven researchers Ludmila Carone, Professor Rony Keppens, and Professor Leen Decin already showed that planets with permanent day sides may still be habitable depending on their 'air conditioning' system. Two out of three possible 'air conditioning' systems on these exoplanets use the cold air of the night side to cool down the day side. And with the right atmosphere and temperature, planets with permanent day and night sides are potentially habitable.

Whether the 'air conditioning' system is actually effective depends on the interaction between the surface of the planet and its atmosphere, Ludmila Carone's new study shows.

Carone: "We built hundreds of computer models to examine this interaction. In an ideal situation, the cool air is transported from the night to the day side. On the latter side, the air is gradually heated by the star. This hot air rises to the upper layers of the atmosphere, where it is transported to the night side of the planet again."

But this is not always the case: on the equator of many of these rocky planets, a strong air current in the upper layers of the atmosphere interferes with the circulation of hot air to the night side. The 'air conditioning' system stops working, and the planet becomes uninhabitable because the temperatures are too extreme.

Ludmila Carone: "Our models show that friction between the surface of the planet and the lower layers of the atmosphere can suppress these strong air currents. When there is a lot of surface friction, the 'air conditioning' system still works."

The KU Leuven researchers created models in which the surface-atmosphere interaction on the exoplanet is the same as on Earth, and models in which there is ten times as much interaction as on Earth. In the latter case, the exoplanets had a more habitable climate. If planets with a well-functioning 'air conditioning' system also have the right atmosphere composition, there's a good chance that these exoplanets are habitable.
-end-


KU Leuven

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.