Nav: Home

Tropical cyclones on track to grow more intense as temperatures rise

July 14, 2016

Powerful tropical cyclones like the super typhoon that lashed Taiwan with 150-mile-per-hour winds last week and then flooded parts of China are expected to become even stronger as the planet warms. That trend hasn't become evident yet, but it will, scientists say.

So far, the warming effects of greenhouse gases on tropical cyclones have been masked, in part by air pollution.

Over the past century, tiny airborne particles called aerosols, which cool the climate by absorbing and reflecting sunlight, largely cancelled out the effects of planet-warming greenhouse gas emissions when it came to tropical storm intensity, according to a new scientific review paper published this week in the journal Science. That might sound like a good thing, but many of those particles came from the burning of fossil fuels and wood, and contributed to acid rain, smog and lung damage. As vehicles and power plants added filters and scrubbers to reduce their impact on human health, levels of man-made aerosols in the atmosphere began to decline. At the same time, greenhouse gas concentrations continued to rise.

That compensating effect won't continue if greenhouse gas warming keeps increasing, the scientists write. Using model simulations, they provide new calculations of the cancelling effects of aerosols and greenhouse gases on tropical cyclones worldwide. They also take a closer look at the still-developing understanding of how climate change will affect tropical cyclones, also known regionally as typhoons or hurricanes.

"The fact that global warming's fingerprints don't yet jump out at us when we look at hurricanes isn't surprising - it's what current science tells us we should expect," said lead author Adam Sobel, a professor at Columbia University's Lamont-Doherty Earth Observatory and School of Engineering. "The same science tells us that those fingerprints will show up eventually in more ultra-powerful storms."

Increasing potential intensity

The scientists examined a wide range of published analyses of tropical cyclone data and computer modeling, looking specifically at potential intensity, which predicts the maximum intensity that tropical cyclones could reach in a given environment. Their new global calculations of the cancelling effect follow a 2015 study led by Lamont's Mingfang Ting, with Suzana Camargo, also a coauthor on the new paper, that showed similar effects over the North Atlantic, where hurricanes that make landfall in the United States form.

Many factors contribute to a tropical cyclone's intensity. At the most basic, the storm's convective strength - the boiling motion of air rising from the ocean surface to the atmosphere - depends on the temperature difference between the surface ocean and the upper atmosphere. Computer models that simulate the physics of tropical cyclones suggest that this difference should increase as the climate and sea surface temperatures warm, and that tropical storm strength should increase with it.

Less well understood is how climate change should influence the number of tropical cyclones that form each year. Computer models indicate that while the total number of cyclones should decline in a warming climate, more intense, highly destructive storms like Super Typhoon Nepartak are likely to become more common.

We have seen harbingers of that change in recent years: Typhoon Haiyan, also known as Yolanda, killed more than 6,300 people as it devastated parts of the Philippines as a Category 5 storm in 2013. Last year, Hurricane Patricia became the second most-intense tropical cyclone on record when its sustained winds reached 215 mph before weakening to hit Mexico with winds still powerful at 150 mph.

The scientists' review finds that the largest increases in tropical cyclone potential intensity are expected to be at the margins of the tropics, particularly in the Atlantic and Pacific. The amount of rain that tropical storms bring is also expected to increase as the planet warms, due to increasing water vapor; and coastal flooding from storm surges that accompany tropical storms are expected to become more of a problem as sea levels rise. The scientists also describe a shift in tropical cyclone tracks toward the margins of the tropics, noting that it is unclear if the shift is a response to warming. Simulations for the western North Pacific suggest that it is, at least in part.

Detecting the influence of climate change

Two factors make it difficult to detect greenhouse gas-related trends in tropical cyclone intensity, as the authors explain.

One is the influence of aerosols. Model calculations indicate that aerosols have about twice the effect of greenhouse gases on a tropical cyclone's potential intensity. So while greenhouse gas levels have been greater than aerosol levels for many decades in terms of absolute magnitude - which is why the planet has warmed by about 1.5?F since the Industrial Revolution - they have only recently surpassed the cooling effect of aerosols in terms of their influence on tropical cyclone intensity.

The other challenge is natural variability. Tropical cyclones are relatively rare - the world averages around 90 per year - and that number fluctuates from year to year and decade to decade, due in large part to natural causes. It is statistically difficult to detect long-term trends within that large natural variability, Sobel said. Satellite records that can monitor tropical storms worldwide also only go back to the 1970s.

Scientists at Lamont, including Sobel, Camargo and coauthors Allison Wing and Chia-Ying Lee, are using both observations and computer models to expand understanding of how tropical cyclone behavior has changed and the physical mechanisms by which climate affects extreme weather. Among other projects, they are developing a tropical cyclone risk model that can be used in urban planning that incorporates climate factors in determining the probability of a tropical cyclone making landfall at a given location.
The other coauthors of the paper are Michael Tippett of Columbia's School of Engineering, and Timothy Hall of NASA's Goddard Institute for Space Studies. Funding for the research was provided by the National Science Foundation and the Office of Naval Research.

The paper, "Human Influence on Tropical Cyclone Intensity," is available from the authors.

Scientist contact:

Adam Sobel (845) 365-8527

Suzana Camargo (845) 365-8640

More information: Kevin Krajick, Senior editor, science news, The Earth Institute 212-854-9729

Lamont-Doherty Earth Observatory is Columbia University's home for Earth science research. Its scientists develop fundamental knowledge about the origin, evolution and future of the natural world, from the planet's deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean, providing a rational basis for the difficult choices facing humanity. | @LamontEarth

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth.

The Earth Institute at Columbia University

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at