Nav: Home

Soot may have killed off the dinosaurs and ammonites

July 14, 2016

A new hypothesis on the extinction of dinosaurs and ammonites at the end of the Cretaceous Period has been proposed by a research team from Tohoku University and the Japan Meteorological Agency's Meteorological Research Institute.

The researchers believe that massive amounts of stratospheric soot ejected from rocks following the famous Chicxulub asteroid impact, caused global cooling, drought and limited cessation of photosynthesis in oceans. This, they say, could have been the process that led to the mass extinction of dinosaurs and ammonites.

The asteroid, also known as the Chicxulub impactor, hit Earth some 66 million years ago, causing a crater more than 180 km wide. It's long been believed that that event triggered the mass extinction that led to the macroevolution of mammals and the appearance of humans.

Tohoku University Professor Kunio Kaiho and his team analyzed sedimentary organic molecules from two places - Haiti, which is near the impact site, and Spain, which is far. They found that the impact layer of both areas have the same composition of combusted organic molecules showing high energy. This, they believe, is the soot from the asteroid crash.

Soot is a strong, light-absorbing aerosol, and Kaiho's team came by their hypothesis by calculating the amount of soot in the stratosphere estimating global climate changes caused by the stratospheric soot aerosols using a global climate model developed at the Meteorological Research Institute. The results are significant because they can explain the pattern of extinction and survival.

While it is widely accepted that the Chicxulub impact caused the mass extinction of dinosaurs and other life forms, researchers have been stumped by the process of how. In other words, they'd figured out the killer, but not the murder weapon.

Earlier theories had suggested that dust from the impact may have blocked the sun, or that sulphates may have contaminated the atmosphere. But researchers say it is unlikely that either phenomenon could have lasted long enough to have driven the extinction.

The new hypothesis raised by Kaiho's team says that soot from hydrocarbons had caused a prolonged period of darkness which led to a drop in atmospheric temperature. The team found direct evidence of hydrocarbon soot in the impact layers and created models showing how this soot would have affected the climate.

According to their study, when the asteroid hit the oil-rich region of Chicxulub, a massive amount of soot was ejected which then spread globally. The soot aerosols caused colder climates at mid-high latitudes, and drought with milder cooling at low latitudes on land. This in turn led to the cessation of photosynthesis in oceans in the first two years, followed by surface-water cooling in oceans in subsequent years.

This rapid climate change is believed to be behind the loss of land and marine creatures over several years, suggesting that rapid global climate change can and did play a major role in driving extinction.

Kaiho's team is studying other mass extinctions in the hopes of further understanding the processes behind them.
-end-


Tohoku University

Related Asteroid Articles:

Queen's University scientist warns of asteroid danger
A leading astrophysicist from Queen's University Belfast has warned that an asteroid strike is just a matter of time.
New study ranks hazardous asteroid effects from least to most destructive
If an asteroid struck Earth, which of its effects -- scorching heat, flying debris, towering tsunamis -- would claim the most lives?
Wrong-way asteroid plays 'chicken' with Jupiter
For at least a million years, an asteroid orbiting the 'wrong' way around the sun has been playing a cosmic game of chicken with giant Jupiter and with about 6,000 other asteroids sharing the giant planet's space, says a report published in the latest issue of Nature.
Ceres hosts organic compounds, and they formed on the asteroid, not beyond
Aliphatic organic compounds -- carbon-based building blocks that may have a role in the chemistry that creates life -- have been detected for the first time on Ceres, an asteroid and dwarf planet, a new study reveals.
It's a bird... It's a plane... It's the tiniest asteroid!
A team led by UA astronomer Vishnu Reddy has characterized the smallest known asteroid using Earth-based telescopes.
NASA to map Asteroid Bennu from the ground up
The OSIRIS-REx Laser Altimeter, or OLA will be used to create three-dimensional global topographic maps of Bennu and local maps of candidate sample sites.
NASA to map the surface of an asteroid
NASA's OSIRIS-REx spacecraft will travel to near-Earth asteroid Bennu to sample surface material and return it to Earth for study.
NASA instrument to use X-rays to map an asteroid
NASA's OSIRIS-REx spacecraft will launch September 2016 and travel to the near-Earth asteroid Bennu to harvest a sample of surface material and return it to Earth for study.
New type of meteorite linked to ancient asteroid collision
An ancient space rock discovered in a Swedish quarry is a type of meteorite never before found on Earth, and likely a remnant of a massive asteroid collision 470 million years ago that sent debris raining to Earth.
Scientists reconstruct the history of asteroid collisions
An international study, in which Spain's National Research Council (CSIC) participates, reveals that asteroids have endured a multitude of impact strikes since their formation 4,565 million years ago.

Related Asteroid Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".