Butterflies' diet impacts evolution of traits

July 14, 2016

Why do some organisms within a single species have many offspring, while others have relatively few? A new study led by University of Minnesota researcher Emilie Snell-Rood finds that access to some nutrients may be a star player in shaping traits related to fitness such as fecundity and eye size over the long term. Given drastic increases in the availability of many nutrients due to the widespread use of fertilizers and road salts, the finding has important implications for agriculture and ecology.

Snell-Rood and colleagues wanted to find out if different types of nutrients played a role in shaping the evolutionary history of five closely-related families of butterflies. "It's really hard to quantify diet," she says, noting that prior studies have provided coarse comparisons across animals -- for instance, carnivores versus herbivores. "We wanted to test the idea that nutrition shapes life history evolution at a finer level."

To do that, researchers correlated the nutrition of 96 different butterfly species' food with a broad range of phenotypic features such as eye size. The researchers looked at three elements in the butterflies' diets: nitrogen, sodium, and phosphorus. Nitrogen is a necessary nutrient for protein building, sodium is critical for proper functioning of muscle and nervous systems, and phosphorous is thought to be important for growth rate.

They found that butterfly species with nitrogen-rich diets tended to have larger numbers of eggs, though the eggs themselves were relatively smaller. They also found that diets high in both nitrogen and sodium probably led to the evolution of larger eyes. In butterflies, the visual system is important for finding both food and mates, such that larger eyed individuals have an evolutionary advantage.

Human activity impacts the balance of nutrients in the environment. For example, heavy farm fertilization and increasing atmospheric deposition are both driving up nitrogen concentration in the soil, while road salts are similarly increasing sodium content in some places. "We are changing evolutionary selection pressures on traits," said Snell-Rood. "Pests might be evolving to be more fecund because, on average, their diet is of higher quality."

Emilie Snell-Rood is an associate professor in the College of Biological Sciences at the University of Minnesota. The paper was published in the Royal Society journal Proceedings B.
Source: https://unsplash.com/photos/FF85L4v0woM

University of Minnesota

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.