Nav: Home

Measuring arsenic in Bangladesh's rice crops

July 14, 2016

AMHERST, Mass. - Naturally-occurring arsenic in Bangladesh's groundwater has been identified as one of the world's great humanitarian disasters, with millions people at risk of cancers and other diseases from drinking water and eating rice irrigated with contaminated water. Now University of Massachusetts Amherst analytical chemist Julian Tyson and his student Ishtiaq "Rafi" Rafiyu are partnering with Chemists Without Borders (CWB) to develop a low-cost, easy-to-use test kit to measure arsenic in Bangladesh's rice supply, offering consumers information on exposure.

Tyson says, "One of the first steps in trying to make a difference and help people avoid this exposure has been to increase access to detection and remediation of arsenic-contaminated water, and many non-governmental organizations have been active for years in this area. Our current rice project with CWB builds on earlier work to develop a really low-cost procedure for testing water for arsenic. We hope our contribution to CWB's program of measurement and education will create more awareness and help make a significant difference to the people of Southeast Asia in the long run."

Tyson's analytical chemistry laboratory has for many years assisted environmental scientists and other chemists with tests for potentially harmful compounds of lead, cadmium, chromium, selenium and arsenic in soil and water. Last year, CWB approached the UMass Amherst lab to develop a simple, low-cost test for arsenic in rice, based on the groundwater test.

CWB president Ray Kronquist says the idea is not only to provide an accurate and reliable kit, but to teach chemistry students in Bangladesh who have access to a basic lab at the Asian University for Women (AUW) in Chittagong, to use it. These young interns will then provide arsenic exposure information and education on protective measures such as extra washing or choosing different varieties to local farmers, families, merchants and consumers.

Tyson recalls, "By an amazing coincidence, just a couple of weeks after the CWB request came in, a student approached me and asked if I had an independent study project for him in the spring semester. I always want to encourage that, and it turns out that Rafi is not only from Bangladesh, he grew up in Chittagong. He was the ideal person for the job, and I soon asked him to join the CWB project."

Rafiyu is now a summer intern supported by the Juanita F. Bradspies Fund for Undergraduate Research in Chemistry and will spend this summer conducting experiments to adapt an existing arsenic water test kit for testing rice samples. He and Tyson hope that by September or early fall, CWB will be able to use the adapted test kit at the AUW in Chittagong.

One of the key challenges in testing rice instead of water is that starch in the grain interferes with the reaction. One approach is to modify the chemistry by replacing zinc, the hydride-generation reagent, with borohydride. However, when Rafiyu adds this to the powdered rice paste, the reaction is extremely vigorous and must be slowed to detect any arsenic present.

Tyson and Rafiyu estimate that it will take scores of experiments to identify the optimum combination of reagent, concentrations and reaction conditions. Once that is solved, they plan to replace what is now a naked-eye evaluation of color on the arsenic test strip with a method that creates a digital image, for example with a cell phone camera, for analysis.

Once they put a new kit into the hands of the college interns in Bangladesh, CWB will help them to develop presentations about the health hazards of arsenic in rice at high schools and community centers. It is hoped that the young "agents of change" there can bring awareness and education to help people reduce their exposure. Tyson notes, "We need to address the problems at the village level, and the place to start is with accurate chemical measurement."

In communities with a high arsenic concentration in the water, the interns may try to connect people with organizations that can help the communities transition to safe water, for example. Tyson says different water levels or aquifers have different arsenic contamination, and it is often possible to find a shallower or a deeper one that is relatively free of arsenic. Using that water to irrigate rice can reduce arsenic contamination, as can rinsing rice before cooking, and cooking in excess water. Armed with local test results, consumers can make informed decisions about reducing arsenic intake, especially by infants and small children.

Tyson notes that current scientific thinking is that no arsenic exposure or intake is safe, but an "acceptable risk threshold" of 1 in 10,000 for an arsenic-induced cancer is generally viewed as sensible and achievable. This would correspond to a concentration of 100 parts per billion (ppb) in rice, based on modest consumption by an adult. "That's the equivalent of a grain of rice in about a quarter of a ton of rice," he notes. "Arsenic compounds are extremely toxic."

The analytical chemist hopes that government agencies around the world will step forward as the U.S. Food and Drug Administration did recently when it established a limit of 100 ppb for inorganic arsenic in baby rice cereal. "We need to extend that to all rice, which I believe should be labeled as to its arsenic content. Although the situation in Asia is serious, arsenic does occur in quite high concentrations in rice grown right here in the USA," he says.
-end-


University of Massachusetts at Amherst

Related Arsenic Articles:

Arsenic in drinking water may change heart structure
Among young adults, drinking water contaminated with arsenic may lead to structural changes in the heart that raise their risk of heart disease.
Arsenic-breathing life discovered in the tropical Pacific Ocean
In low-oxygen parts of the ocean, some microbes are surviving by getting energy from arsenic.
Parboiling method reduces inorganic arsenic in rice
Contamination of rice with arsenic is a major problem in some regions of the world with high rice consumption.
UN University compares technologies that remove arsenic from groundwater
A UN University study compares for the first time the effectiveness and costs of many different technologies designed to remove arsenic from groundwater -- a health threat to at least 140 million people in 50 countries.
Arsenic for electronics
The discovery of graphene, a material made of one or very few atomic layers of carbon, started a boom.
Arsenic in combination with an existing drug could combat cancer
Investigators have discovered that arsenic in combination with an existing leukemia drug work together to target a master cancer regulator.
Moss capable of removing arsenic from drinking water discovered
A moss capable of removing arsenic from contaminated water has been discovered by researchers from Stockholm University.
Optical emission of two-dimensional arsenic sulfide prepared in plasma
Since the discovery of graphene in 2004, there has been a rapidly growing interest among scientists in the study of 2-D materials 'beyond graphene'.
Study indicates arsenic can cause cancer decades after exposure ends
A new paper published in the Journal of the National Cancer Institute shows that arsenic in drinking water may have one of the longest dormancy periods of any carcinogen.
Arsenic in domestic well water could affect 2 million people in the US
Clean drinking water can be easy to take for granted if your home taps into treated water sources.
More Arsenic News and Arsenic Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab