Bacteria never swim alone

July 14, 2017

Many animal species display flocking behaviour, but the fact that microorganisms do is not as well known. Researchers at Lund University in Sweden have now shown that algae and bacteria form flocks at very low concentrations of individuals, a finding that could increase our future understanding of how the organisms infect their host animals.

Flocking behaviour in animals seemingly arises spontaneously in a group of independent individuals without a clear leader. This behaviour occurs among all types of organisms, from bacteria to people. One hypothesis, therefore, is that there are fundamental principles for flock building that are not dependent on single individuals.

Researchers at Lund University, in cooperation with colleagues from the UK and France, have now found that flocking behaviour among microorganisms is more advanced than we previously thought.

"Our research is a physical explanatory model of how microorganisms move. From a biological perspective, it is useful to examine the evolutionary basis for flocking behaviour among bacteria, as the connections can increase our understanding of the course of infectious diseases", says Joakim Stenhammar, chemistry researcher at Lund University.

When a person or animal swims, they create backwashes or wakes that others can sense. The researchers have now created a theoretical model that describes how single microorganisms communicate with each other via the backwashes that each organism creates. The physical principle differs from ordinary backwashes, but these flows enable the bacteria to sense each other's presence and affect each other at very low concentrations. In the light of this, microorganisms cannot be described as isolated individuals.

It was previously known that certain swimming bacteria, such as E. coli and Salmonella, form flocks at high concentrations. In the new study, Stenhammar and his colleagues have shown that it is only at extremely low concentrations - less than ten per cent of what was previously thought - that bacteria can be considered as individuals.

"In contrast to an individual bacterium, flocks can move in a synchronised way over long length scales and several times faster than a single bacterium", says Joakim Stenhammar.

"Our research adds another piece of the puzzle to our understanding of how flocking behaviour works in biological systems, and the model can be applied to a large number of swimming microorganisms", says Joakim Stenhammar.
-end-
Contact:

Joakim Stenhammar, Associate Senior Lecturer
Department of Chemistry, Lund University
Tel. +46 (0)707 22 61 12
Email: joakim.stenhammar@fkem1.lu.se

Lund University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.