Scientists discovered one of the brightest galaxies known

July 14, 2017

According to Einstein's theory of General Relativity when a ray of light passes close to a very massive object, the gravity of the object attracts the photons and deviates them from their intial path. This phenomenon, known as gravitational lensing, is comparable to that produced by lenses on light rays, and acts as a sort of magnifier, changing the size and intensity of the apparent image of the original object.

Using this effect, a team of scientists from the Instituto de Astrofisica de Canarias (IAC) led by researcher Anastasio Díaz-Sánches of the Polytechnic University of Cartagena (UPT) has discovered a very distant galaxy, some 10 thousand million light years away, about a thousand times brighter than the Milky Way. It is the brightest of the submillimetre galaxies, called this because of their very strong emissionin the far infrared. To measure it they used the Gran Telescopio Canarias (GTC) at the Roque de los Muchachos Observatory (Garafía, La Palma).

"Thanks to the gravitational lens" notes Anastasio Díaz Sánchez, a researcher at the UPCT and first author of the article " produced by a cluster of galaxies between ourselves and the source, which acts as if it was a telescope, the galaxy appears 11 times bigger and brighter than it really is, and appears as several images on an arc centred on the densest part of the cluster, which is known as an "Einstein Ring". The advantage of this kind of amplification is that it does not distort the spectral properties of the light, which can be studied for these very distant objects as if they were much nearer".

To find this galaxies, whose discovery was recently published in an article in the Astrophysical Journal Letters, a search of the whole sky was carried out, combining the data bases of the satellites WISE (NASA) and Planck (ESA) in order to identify the brightest submillimetre galaxies. Its light, amplified by a much nearer galaxy cluster acting as a lens, forms an image which appears much bigger than it should, and thanks to this effect they could characterize its nature and properties spectroscopically using the GTC.

Forming stars at high velocity

The galaxy is notable for having a high rate of star formation. It is forming stars at a rate of 1000 solar masses per year, compared to the Milky Way which is forming stars at a rate of some twice a solar mass per year. Susana Iglesias-Groth, an IAC astrophysicist and a co-author of the article, adds. "This type of objects harbour the most powerful star forming regions known in the universe. The next step will be to study their molecular content".

The fact that the galaxy is so bright, its light is gravitationally amplifed, and has multiple images allows us to look into its internal properties, which would otherwise not be possible with such distant galaxies.

"In the future we will be able to make more detailed studies of its star formation using interferometers such ast the Northern Extended Millimeter Array (NOEMA/IRAM),in France, and the Atacama Large Millimeter Array (ALMA), in Chile" concludes IAC researcher Helmut Dannerbauer, who is another contributor to this discovery.
-end-


Instituto de Astrofísica de Canarias (IAC)

Related Star Formation Articles from Brightsurf:

Low-metallicity globular star cluster challenges formation models
On the outskirts of the nearby Andromeda Galaxy, researchers have unexpectedly discovered a globular cluster (GC) - a massive congregation of relic stars - with a very low abundance of chemical elements heavier than hydrogen and helium (known as its metallicity), according to a new study.

Astronomers turn up the heavy metal to shed light on star formation
Astronomers from The University of Western Australia's node of the International Centre for Radio Astronomy Research (ICRAR) have developed a new way to study star formation in galaxies from the dawn of time to today.

New observations of black hole devouring a star reveal rapid disk formation
When a star passes too close to a supermassive black hole, tidal forces tear it apart, producing a bright flare of radiation as material from the star falls into the black hole.

How galaxies die: New insights into the quenching of star formation
Astronomers studying galaxy evolution have long struggled to understand what causes star formation to shut down in massive galaxies.

The cosmic commute towards star and planet formation
Interconnected gas flows reveal how star-forming gas is assembled in galaxies.

Star formation project maps nearby interstellar clouds
Astronomers have captured new, detailed maps of three nearby interstellar gas clouds containing regions of ongoing high-mass star formation.

Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.

Distant milky way-like galaxies reveal star formation history of the universe
Thousands of galaxies are visible in this radio image of an area in the Southern Sky, made with the MeerKAT telescope.

Cascades of gas around young star indicate early stages of planet formation
What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.

Read More: Star Formation News and Star Formation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.