Scientists find new link between delirium and brain energy disruption

July 14, 2020

Scientists from Trinity College Dublin have discovered a new link between impaired brain energy metabolism and delirium - a disorienting and distressing disorder particularly common in the elderly and one that is currently occurring in a large proportion of patients hospitalised with COVID-19 [15th of July 2020].

While much of the research was conducted in mice, additional work suggests overlapping mechanisms are at play in humans because cerebrospinal fluid (CSF) collected from patients suffering from delirium also contained tell-tale markers of altered brain glucose metabolism.

Collectively, the research, which has just been published in the Journal of Neuroscience, suggests that therapies focusing on brain energy metabolism may offer new routes to mitigating delirium.

Delirium

When the body experiences high levels of inflammation - such as during bacterial or viral infections - the way our brains function changes, which in turn affects our mood and motivation. In older patients such acute inflammation can produce a profound disturbance of brain function known as delirium. Despite the disorder being relatively common, the mechanisms by which it arises are poorly understood.

In the new research the scientists found that artificially inducing peripheral inflammation in mice triggered sudden onset cognitive dysfunction, and that this is mediated by a disturbance to energy metabolism.

In these experiments, inflammation left the mice with lower levels of blood sugar (glucose), which the brain requires for maintaining normal function. When the animals were supplemented with glucose, their cognitive performance returned towards normal, despite the continued inflammation.

Professor Colm Cunningham, who leads the Trinity Biomedical Science Institute lab where the work was performed, said: "An important feature of these experiments was that mice with early stages of pre-existing neurodegenerative disease were far more susceptible to dysfunction when these metabolic changes occurred.

"Our collaborators in Oslo also detected evidence of altered brain glucose metabolism in cerebrospinal fluid taken from people experiencing delirium, which argues for overlapping mechanisms in humans and mice. In other words, the signs are that similar processes are at work in people."

Dr Wes Ely, a critical care physician from Vanderbilt University, who wasn't involved with the study, added:

"The finding that the neurodegenerative animals are less resilient to this disturbance of energy metabolism really resonates with what we see in our intensive care unit patients with delirium."

Given the frequency of delirium during hospitalised members of the elderly population and, given that these episodes can accelerate the progress of underlying dementia treatments are desperately needed.

Professor Cunningham added: "Simply providing glucose to patients is not likely to treat delirium in most cases but collectively our data emphasise that an appropriate supply of both oxygen and glucose to the brain becomes especially important in older patients and in those with existing dementia. Therefore, we believe that focusing on brain energy metabolism may offer routes to mitigating delirium."
-end-


Trinity College Dublin

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.