Nav: Home

Scientists ID gene responsible for deadly glioblastoma

July 14, 2020

Scientists have identified an oncogene (a cancer-causing gene) responsible for glioblastoma, the deadliest brain tumor. The discovery offers a promising new treatment target for a cancer that is always fatal.

The researchers say the oncogene is essential to the survival of the cancer cells. Without it, the cancer cells die. Scientists have already developed many targeted therapies for other cancers with a similar "oncogene addiction."

"Glioblastoma is one of the most deadly cancers. Unfortunately, there is no effective treatment option for the disease. The current standard option, radiation plus temozolomide, which displayed a 2.5-month better survival rate, was hailed as a great success. Clearly, better understanding and new therapeutic targets are urgently needed," said researcher Hui Li, PhD, of the University of Virginia School of Medicine and the UVA Cancer Center. "The novel oncogene we discovered promises to be an Achilles' heel of glioblastoma, with its specific targeting potentially an effective approach for the treatment of the disease."

Targeting Glioblastoma

Oncogenes are naturally occurring genes that spiral out of control and cause cancer. The oncogene Li and his colleagues identified, AVIL, normally helps cells maintain their size and shape. But the gene can be shifted into overdrive by a variety of factors, the researchers found. This causes cancer cells to form and spread.

Blocking the gene's activity completed destroyed glioblastoma cells in lab mice but had no effect on healthy cells. This suggests targeting the gene could be an effective treatment option.

"AVIL is overexpressed in 100% of glioblastoma cells and clinical samples, and is expressed at even higher level in so called glioblastoma stem cells, but hardly expressed in normal cells and tissues," said Li, of UVA's Department of Pathology. "Silencing the gene wiped out glioblastoma cells in culture and prevented animal xenografts, while having no effect on normal control cells. Clinically, high AVIL expression correlates with worse patient outcome. These findings and classic transformation assays proved AVIL being a bona fide oncogene."

Identifying Oncogenes

Identifying an oncogene, as Li and his colleagues have done, is an important step toward developing a treatment. But identifying oncogenes is very difficult. The environment inside cells is so complex that it's hard to determine cause-and-effect.

Li and his team weren't even working on glioblastoma when they first caught the scent that led to the discovery. Instead, they were studying a rare childhood cancer called rhabdomyosarcoma. (Childhood cancers typically are easier to understand and involve fewer mutations than adult cancers.)

During their research, the scientists discovered an abnormality in the AVIL gene. That prompted them to examine adult cancers to see if the gene could be contributing there. And it was. The researchers concluded the gene plays a "critical role" in glioblastoma, they report in a new scientific paper outlining their findings.

Li and his team believe their approach can be used to discover other oncogenes - hopefully leading to new treatments for a variety of cancers.

"In this day and age, many people thought that all the significant oncogenes have been discovered, Here we uncovered a novel powerful oncogene, and elucidated its signaling pathways, all starting from studying a structure variant in a pediatric cancer. In the past, numerous significant discoveries in cancer also stemmed from studying pediatric tumors" Li said. "We believe this is a strategy can be applied to find novel players in other adult cancers."
-end-
Glioblastoma Findings Published

The researchers have published their findings in the scientific journal Nature Communications. The research team consisted of Zhongqiu Xie, Pawel ?. Janczyk, Ying Zhang, Aiqun Liu, Xinrui Shi, Sandeep Singh, Loryn Facemire, Kristopher Kubow, Zi Li, Yuemeng Jia, Dorothy Schafer, James W. Mandell, Roger Abounader and Li.

The research was supported by the National Institutes of Health's National Cancer Institute, grant CA240601, and Stand Up To Cancer, grant SU2C-AACR-IRG0409.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

University of Virginia Health System

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.