Twisting magnetic fields for extreme plasma compression

July 14, 2020

A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

Known as the fourth state of matter, plasma is a gas so hot that electrons rip free of their atoms. Researchers use magnetic compression to study extreme plasma states in which the density is high enough for quantum mechanical effects to become important. Such states occur naturally inside stars and gas giant planets due to compression from gravity.

The research group led by

"It's like trying to squeeze a stick of soft butter with your hands," said McBride. "The butter squishes out between your fingers."

The butter in McBride's analogy is plasma and the fingers are magnetic field lines. His group looked for a way to keep the magnetic field from digging into the imperfections in the cylinder, instead causing the field to press more uniformly on the cylinder's outer surface. They did this by twisting the magnetic field into a helix, that spring-like shape, and varying the angle at which the helix pressed on the plasma cylinder. This made it harder for the magnetic field to slice in--the field moved across many divots rather than pressing into any one divot for too long.

The most twisted magnetic configurations tested in these experiments reduced the length of the escaping plasma tentacles by about 70%. The research was done in collaboration with Sandia National Laboratories and the Laboratory of Plasma Studies at Cornell University.

The team changed the shape of the magnetic field by changing the way that the electrical current--over 1 million amperes--ran through the compression device. The electrical current typically runs up through the central cylinder that is to be compressed and then back down through straight "return current" columns that surround the central cylinder. This produces a cylindrical magnetic field that surrounds the central cylinder. To transform the cylindrical field into a helix, the team twisted the return-current columns around the central cylinder. The central cylinder starts out as a metal foil, but the huge electrical current quickly transforms the metal into a plasma. They ran the experiments on the Cornell Beam Research Accelerator.

"Designing the return current structures was an interesting balancing act," said Paul Campbell, first author on the paper and a Ph.D. student in nuclear engineering and radiological sciences at U-M. "We weren't sure we could even get these structures machined, but fortunately, metal 3D printing has advanced far enough that we were able to get them printed instead."

Campbell explained that when the structures are more twisted, less current runs through them, so the columns had to be placed closer to the imploding plasma to compensate. At the same time, they needed gaps in the structure so that they could see what was going on with the implosion.

In line with replicating the conditions inside stars, magnetic compression is a method for compressing nuclear fusion fuel--typically variants of hydrogen--to study the processes that power stars. The technique can also generate powerful X-ray bursts and simulate astrophysical phenomena such as plasma jets near black holes.

A paper on this research, "Stabilization of liner implosions via a dynamic screw pinch," is accepted by the journal Physical Review Letters. The research will also be featured in an invited talk at the annual conference of the American Physical Society's Division of Plasma Physics in November 2020.
The study was funded by the National Science Foundation and the Department of Energy. The opinions, findings and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation or the U.S. Department of Energy.

Ryan McBride

Study abstract: Stabilization of liner implosions via a dynamic screw pinch IMAGE LINK:

University of Michigan

Related Spin Articles from Brightsurf:

A new candidate material for quantum spin liquids
Using a unique material, EPFL scientists have been able to design and study an unusual state of matter, the Quantum Spin Liquid.

The return of the spin echo
The spin of particles can be manipulated by a magnetic field.

Nanoearthquakes control spin centers in SiC
Researchers from the Paul-Drude-Institut in Berlin, the Helmholtz-Zentrum in Dresden and the Ioffe Institute in St.

Spin, spin, spin: researchers enhance electron spin longevity
The electron is an elementary particle, a building block on which other systems evolve.

Ferried across: Figuring out unconventional spin transport in quantum spin liquids
Scientists at Tokyo Institute of Technology and Yokohama National University uncover the peculiar mechanism by which spin perturbations travel through a seemingly unpassable region of a quantum spin liquid system.

The spin state story: Observation of the quantum spin liquid state in novel material
The quantum spin liquid (QSL) state is an exotic state of matter where the spin of electrons, which generally exhibits order at low temperatures, remains disordered.

Physicists offer a new 'spin' on memory
University of Arizona researchers report a discovery that opens new possibilities in the development of spintronics, a new type of memory storage capable of processing information much faster than current technology while consuming less energy.

Machine learning puts a new spin on spin models
Tokyo, Japan - Researchers from Tokyo Metropolitan University have used machine learning to study spin models, used in physics to study phase transitions.

Study puts spin into quantum technologies
The ability to manipulate and read out single electron spins in solids has the potential to advance applications in fundamental science, defence and industry--scientists say.

New method for using spin waves in magnetic materials
In order to miniaturize individual components of mobile phones or computers, for example, magnetic waves are currently regarded as promising alternatives to conventional data transmission functioning by means of electric currents.

Read More: Spin News and Spin Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to