Rethinking how the brain sees visual features

July 15, 2003

DURHAM, N.C. -- Brain scientists will have to rethink the current theory of how the visual processing region of the brain is organized to analyze basic information about the geometry of the environment, according to Duke neurobiologists. In a new study reported in the June 26, 2003, Nature, they studied the visual-processing region -- called the visual cortex -- of ferrets, as the animals' brains responded to complex patterns.

The results, they said, indicated that clusters of neurons in that region do not specialize in recognizing a particular combination of stimulus features, as previously believed. Rather, individual clusters react to a broad range of stimulus combinations -- combinations that can be predicted by understanding the fundamental spatial and temporal properties of the visual stimulus. The scientists' research was supported by the National Eye Institute.

The visual cortex -- a layer of brain tissue at the back of the head -- is the first area within the cerebral cortex that processes neural signals from the eye. It performs the basic tasks of recognizing the geometric features of a scene before relaying that information to higher brain regions, where such basic visual data are transformed into the conscious perception of the visual world.

Current theory of visual cortex organization holds that in mammals, including humans, the visual cortex consists of overlapping "feature maps." Each map is an orderly arrangement of neuronal clusters that represents a particular stimulus feature, such as the orientation of edges, their direction of motion, or their spacing. Before these new experiments were performed, it was thought that the response properties of neurons could be predicted by their location relative to the places in the visual cortex where different feature maps overlap. In this view, clusters of neurons are "specialists" for the detection of certain combinations of visual features, such as a set of parallel lines of a certain orientation, spaced a certain distance apart and moving at a specific speed.

In their experiments, Duke neurobiologists -- graduate student Amit Basole, Assistant Professor Leonard White and Professor David Fitzpatrick -- decided to go beyond previous studies in which animals were exposed only to simple visual stimuli consisting of parallel bars, or gratings, with different spacings and moving at different speeds at a right angle to the bars.

"Studies with gratings can tell you a lot," said Fitzpatrick. "For example, you can get a sense of maps of orientation if you change the orientation of the grating. And you can also get information about how properties like spatial frequency are mapped by changing the distance between the bars in the grating, and mapping how that changes patterns of neural activity.

"The underlying assumption was that, in a sense there was a 'place code' for stimulus combinations," said Fitzpatrick. "So, a particular orientation, spatial frequency or direction would activate a certain cluster of neurons in the cortex; and changing the orientation, direction or spatial frequency would shift the locus of activity in a predictable way -- one that signified which attribute had been changed."

However, said Fitzpatrick, "these stimuli are really limiting because you can only look at certain stimulus combinations." To explore how the visual cortex reacted to more complex combinations of stimuli, the researchers exposed ferrets to patterns consisting of short line segments whose orientation, length, direction and speed of motion could be varied independently.

Said White, "With these texture patterns, we have the ability to let different properties interact with one another in ways that are closer to the kinds of stimulus interactions that are often present in the visual environment." A striking example of such interactions is the so-called barber pole illusion, he said.

"While the barber pole is moving horizontally as the pole spins about its axis, it creates a perception that the lines are moving up," said White. "The perception induced by the interaction between the orientation of the lines and the direction of motion is the sort of phenomenon that Amit was seeking to understand in terms of neural responses."

The researchers used a technique called optical imaging to detect brain activity in the animals' visual cortex by shining light of wavelengths that specifically revealed increased blood flow to more active areas. Also, to confirm that the images portrayed actual increases in brain activity, the researchers also recorded electrical activity of individual neurons in different cortical regions during exposure to the patterns.

The effects of changing the visual stimuli on the activity patterns in the animals' brains were surprising, said Fitzpatrick.

"From the prevailing view, if you kept the orientation of the bars constant and varied the other parameters, you might not expect to see much of a change in the maps of activity," said Fitzpatrick. But, in fact, we saw shifts in activity that were much greater than we expected, and the patterns looked identical to those that were produced by textures that had different combinations of line orientation, direction, length and speed. "So, this makes clear that thinking about maps in the cortex as consisting of clusters devoted to particular combinations of features is too simplistic when you're dealing with stimuli that are much more like those you encounter in the visual world," he said. "What we're seeing is that a given spot in the cortex seems to be integrating a number of different stimulus components. All of these components figure into what determines the activation of a given spot in the map."

In this new way of thinking about the visual cortex, it is still possible to consider the clusters of neurons as specialists; neurons in these new studies responded to complex visual patterns with remarkable selectivity, said Fitzpatrick. However, these findings show that what these clusters specialize in is not the recognition of a unique combination of stimulus features, but the detection of a narrow band of spatial and temporal information that may be produced by a surprising large combination of stimulus features.

The researchers plan further studies to attempt to understand how the visual cortex is organized -- for example, seeking to obtain faster snapshots of brain activity, to obtain more detail in changes in brain activity. They are also working with other colleagues to create mathematical models that might reveal the strategy by which the brain has organized its visual perceptual circuitry.
-end-


Duke University

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.