Nav: Home

Early echocardiography to study pulmonary hypertension in mouse model of bronchopulmonary dysplasia

July 15, 2016

HOUSTON - (July 15, 2016) - Sooner is always better when it comes to diagnosing an illness and this is especially true when it comes to lung disease in premature infants, since it can have an impact on a child's health in the long-term. Researchers at Baylor College of Medicine who focus on bronchopulmonary dysplasia and pulmonary hypertension, a common lung disease in premature infants, have shown that echocardiography can be used to detect the pulmonary hypertension in neonatal mice at an earlier time point than previously thought. Their report appears today in the International Journal of Chronic Obstructive Pulmonary Disease.

Bronchopulmonary dysplasia is caused by many factors, including inflammation, infection and oxidative stress. Dr. Binoy Shivanna, assistant professor of pediatrics - neonatology at Baylor and Texas Children's Hospital, and colleagues focus on the oxidative stress and inflammation aspects of the disease, which can damage various parts of the cell and interrupt the development of the lungs. This can lead to problems such as pulmonary hypertension - increased pressure in the blood vessels of the lung - which increases the mortality and long-term problems in infants.

Progress developing improved treatments for the disease has been limited in part by the lack of advanced imaging techniques to detect pulmonary hypertension and lung damage at earlier time points in animal models, which is important to test these potential new treatments. This model could also help researchers better understand how pulmonary hypertension develops, which is an important aspect of Shivanna's research. So the team set out to develop a mouse model of the disease that replicates many of the features observed in infants with the condition.

To induce oxidative stress and inflammation - two contributing factors of the development of the disease - the researchers exposed a group of newborn mice to 70 percent of oxygen or hyperoxia for 14 days, while a control group received 21 percent oxygen or regular air.

The mice exposed to hyperoxia developed lung oxidative stress, inflammation and lungs that resembled those typical of bronchopulmonary dysplasia and pulmonary hypertension in infants. Furthermore, echocardiography tests performed in the young mice showed that the animals had also developed pulmonary hypertension.

"It's important to understand not only the pathology, but also the functional aspect of pulmonary hypertension," said Shivanna. "This is where the echocardiography test, a non-invasive test that uses high frequency sound waves to take pictures of the heart, comes in."

Currently, echocardiography tests have been performed in mice at four weeks of age, which might be too late to intervene. Using the latest advances in research technology, Shivanna and colleagues were able to demonstrate that it is possible to functionally detect pulmonary hypertension at an earlier time point, meaning that interventions could potentially take place sooner.

This mouse model can help researchers develop early interventions to prevent or decrease the severity of some of the later onset diseases, such as chronic obstructive pulmonary disease.
Others who took part in the study include Corey L. Reynolds, Shaojie Zhang, Amrit Kumar Shrestha, all with Baylor College of Medicine and Dr. Roberto Barrios with Houston Methodist Hospital.

This work was supported by grants from the National Institutes of Health (HD-073323), American Heart Association (BGIA-20190008) and American Lung Association (RG-349917), and by the Mouse Phenotyping Core at Baylor College of Medicine with funding from the NIH (U54 HG006348).

Baylor College of Medicine

Related Inflammation Articles:

TWEAKing inflammation
Superficially, psoriasis and atopic dermatitis may appear similar but their commonalities are only skin deep.
More than a 'gut feeling' on cause of age-associated inflammation
Bowdish and her colleagues raised mice in germ-free conditions and compared them to their conventionally raised counterparts.
Inflammation: It takes two to tango
Signal molecules called chemokines often work in tandem to recruit specific sets of immune cells to sites of tissue damage.
Inflammation awakens sleepers
The inflammatory response that is supposed to ward off pathogens that cause intestinal disease makes this even worse.
Inflammation in regeneration: A friend or foe?
Scientists at Tokyo Institute of Technology have discovered a novel mechanism linking inflammation and organ regeneration in fish, which can be conserved among vertebrates.
New RNAi treatment targets eye inflammation
Scientists have developed a new RNA interference (RNAi) therapeutic agent that safely blocked ocular inflammation in mice, potentially making it a new treatment for human uveitis and diabetic retinopathy.
Every meal triggers inflammation
When we eat, we do not just take in nutrients -- we also consume a significant quantity of bacteria.
Inflammation halts fat-burning
Scientists at the University of Bonn have shown in mice that excess pounds can simply be melted away by converting unwanted white fat cells into energy-consuming brown slimming cells.
New tool uses UV light to control inflammation
Cornell researchers have developed a chemical tool to control inflammation that is activated by ultraviolet (UV) light.
Myocardial inflammation elevated in RA patients
Two new studies measure the prevalence of myocardial inflammation in RA patients without known cardiovascular disease, assess how it is associated with high disease activity and show how disease-modifying therapy may decrease this type of inflammation, according to new research findings presented this week at the 2016 ACR/ARHP Annual Meeting in Washington.

Related Inflammation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...