Nav: Home

Rare fungus product reduces resistance to antibiotics

July 15, 2016

Besides mushrooms such as truffles or morels, also many yeast and mould fungi, as well as other filamentous fungi belong to the Ascomycota phylum. They produce metabolic products which can act as natural antibiotics to combat bacteria and other pathogens. Penicillin, one of the oldest antibiotic agents, is probably the best known example. Since then, fungi have been regarded as a promising biological source of antibiotic compounds. Researchers expect that there is also remedy for resistant pathogens among these metabolites.

It depends on the stimulus

However, agents like penicillin are only produced when necessary, not permanently. "Fungi can even deactivate the respective parts of their genome if a metabolite is not needed anymore. These compounds can't be detected any longer and are classified as cryptic compounds," explained Christoph Zutz from the Institute for Milk Hygiene, Milk Technology and Food Science of the Vetmeduni Vienna.

The right stimulus can reinduce the production of antibiotic compounds. The researchers used valproic acid which can induce the activation of such deactivated genes in fungi. In the fungus Doratomyces microsporus, valproic acid even induced the production of several antimicrobial compounds.

Rare compound detected in fungi for the first time

The gained metabolites were effective against a "normal", as well as resistant Staphylococcus aureus pathogens. The team succeeded in filtering out the six most active compounds from all metabolites. These six compounds have been regarded as "cryptic" so far. One compound, cyclo-(L-proline-L-methionine) or cPM, could be detected even for the first time in a fungus. The only source of this compound so far has been a bacterium living in an Antarctic sponge.

Boosting effect as an asset in the fight against resistance

The as yet "cryptic" compound cPM has a special function. It boosts the activity of other antimicrobial compounds. The team assumes that particularly this boosting effect constitutes the effect these compounds have on the tested pathogens.

Therefore, the researchers went a step further and tested the newly detected compound cPM together with ampicillin in two ampicillin-resistant bacteria. The combination has proved successful. "The resistance was demonstrably reduced, even at a lower dose of ampicillin than usually," said co-author and corresponding group leader Kathrin Rychli.

New research platform is looking at the big picture

The team is now going to search for novel antibiotic compounds from other microorganisms by applying similar methods. The new research platform "Bioactive Microbial Metabolites" (BiMM) in Tulln (Lower Austria) provides the facility. BiMM represents the detection of bioactive compounds - metabolites - in microorganisms. "Valproic acid is not the only way to gain active compounds from fungi or other microorganisms. You can also make bacteria and fungi grow together. This also leads to a natural stimulus," explained Joseph Strauss from the University of Natural Resources and Life Sciences, Vienna, who heads the platform. For this purpose, researchers from the University of Veterinary Medicine, Vienna and the University of Natural Resources and Life Sciences, Vienna founded this new research core facility.

Christoph Zutz identified a significant advantage of this inter-university research platform. "Unlike industrial enterprises, we investigate all promising metabolites in microorganisms, not only single chemical compounds. Thus, we consider known and cryptic compounds in our analyses."
-end-
Service: The article „Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores" by Christoph Zutz, Markus Bacher, Alexandra Parich, Bernhard Kluger, Agnieszka Gacek-Matthews, Rainer Schuhmacher, Martin Wagner, Kathrin Rychli and Joseph Strauss was published in the Journal Frontiers in Microbiology. http://journal.frontiersin.org/article/10.3389/fmicb.2016.00510/full

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Kathrin Rychli
Institute for Milk Hygiene, Milk Technology and Food Science
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077 3510
kathrin.rychli@vetmeduni.ac.at
and
Christoph Zutz
Institute for Milk Hygiene, Milk Technology and Food Science
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 4765494184
christoph.zutz@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

University of Veterinary Medicine -- Vienna

Related Fungus Articles:

Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.
Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.
Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.
More Fungus News and Fungus Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...