Nav: Home

Coupled exploration of light and matter

July 15, 2019

The concept of 'quasiparticles' is a highly successful framework for the description of complex phenomena that emerge in many-body systems. One species of quasiparticles that in particular has attracted interest in recent years are polaritons in semiconductor materials. These are created by shining light onto a semiconductor, where the photons excite electronic polarization waves, called excitons. The creation process is followed by a period during which the dynamics of the system can be described as that of a particle-like entity that is neither light nor matter, but a superposition of the two. Only once those mixed light-matter quasiparticles decay -- typically on the timescale of picoseconds -- do the photons gain back their individual identity. Writing in the journal Nature, Patrick Knüppel and colleagues from the group of Professor Ataç Imamoglu in the Department of Physics at ETH Zurich now describe experiments in which the released photons reveal unique information about the semiconductor they have just left; at the same time the photons have been modified in ways that would not have been possible without interacting with the semiconductor material.

Teaching photons new tricks

Much of the recent interest in polaritons comes from the prospect that they open up intriguing new capabilities in photonics. Specifically, polaritons provide a means to let photons do something that photons cannot do on their own: interact with one another. Rays of light normally simply pass through each other. By contrast, photons that are bound in polaritons can interact through the matter part of the latter. Once that interaction can be made sufficiently strong, the properties of photons can be harnessed in new ways, for example for quantum information processing or in novel optical quantum materials. However, achieving interactions strong enough for such applications is no mean feat.

It starts with creating polaritons in the first place. The semiconductor material hosting the electronic system has to be placed in an optical cavity, to facilitate strong coupling between matter and light. Creating such structures is something Imamoglu's group has perfected over the years, in collaboration with others, in particular with the group of Professor Werner Wegscheider, also at the Department of Physics of ETH Zurich. A separate challenge is to make the interaction between polaritons strong enough that they have a sizeable effect during the short lifetime of the quasiparticles. How to achieve such strong polariton-polariton interaction is currently a major open problem in the field, hindering progress towards practical applications. And here Knüppel et al. have now made a substantial contribution with their latest work.

Hall-marks of strong interaction

The ETH physicists have found an unexpected way to enhance the interaction between polaritons, namely by suitably preparing the electrons with which the photons are about to interact. Specifically, they started with the electrons being initially in the so-called fractional quantum Hall regime, where electrons are confined to two dimensions and exposed to a high magnetic field, to form highly correlated states entirely driven by electron-electron interactions. For particular values of the applied magnetic field -- which determines the so-called filling factor characterising the quantum Hall state -- they observed that photons shone onto and reflected from the sample showed clear signatures of optical coupling to quantum Hall states (see the figure).

Importantly, the dependence of the optical signal on the filling factor of the electron system also appeared in the nonlinear part of the signal, a strong indicator that the polaritons have interacted with one another. In the fractional quantum Hall regime, the polariton-polariton interactions were up to a factor of ten stronger than in experiments with the electrons outside that regime. That enhancement by one order of magnitude is a significant advance relative to current capabilities, and might be enough to enable key demonstrations of 'polaritonics' (such as strong polariton blockade). This not least as in the experiments of Knüppel et al. the increase in interactions does not come at the expense of the polariton lifetime, in contrast to many previous attempts.

The power, and challenges, of nonlinear optics

Beyond the implications for manipulating light, these experiments also take the optical characterisation of many-body states of two-dimensional electron systems to a new level. They establish how to separate the weak nonlinear contribution to the signal from the dominant linear one. This has been made possible through a new type of experiment that the ETH researchers have developed. A major challenge was to deal with the requirement of having to illuminate the sample with relatively high-power light, to tweak out the weak nonlinear signal. To ensure that the photons impinging on the semiconductor do not cause unwanted modifications to the electron system -- in particular, ionization of trapped charges -- the Imamoglu-Wegscheider team designed a sample structure that has reduced sensitivity to light, and they performed experiments with pulsed rather than continuous excitation, to minimize exposure to light.

The toolset now developed to measure the nonlinear optical response of quantum Hall states should enable novel insight beyond what is possible with linear optical measurements or in the traditionally used transport experiments. This is welcome news for those studying the interplay between photonic excitations and two-dimensional electron systems -- a field in which there is no lack of open scientific problems.

ETH Zurich Department of Physics

Related Semiconductor Articles:

Ultrafast tunable semiconductor metamaterial created
An international team of researchers has devised an ultrafast tunable metamaterial based on gallium arsenide nanoparticles, as published by Nature Communications.
Graphene 'copy machine' may produce cheap semiconductor wafers
A new technique developed by MIT engineers may vastly reduce the overall cost of wafer technology and enable devices made from more exotic, higher-performing semiconductor materials than conventional silicon.
Method improves semiconductor fiber optics, paves way for developing devices
A new method to improve semiconductor fiber optics may lead to a material structure that might one day revolutionize the global transmission of data, according to an interdisciplinary team of researchers.
Scientists discover new 'boat' form of promising semiconductor GeSe
Princeton researchers have discovered a new form of the simple compound GeSe that has surprisingly escaped detection until now.
UNIST engineers oxide semiconductor just single atom thick
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology, has introduced a new technique that efficiently isolates circulating tumor cells from whole blood at a liquid-liquid interface.
Semiconductor-free microelectronics are now possible, thanks to metamaterials
Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device.
Notre Dame researchers find transition point in semiconductor nanomaterials
Collaborative research at Notre Dame has demonstrated that electronic interactions play a significant role in the dimensional crossover of semiconductor nanomaterials.
Graphene key to growing 2-dimensional semiconductor with extraordinary properties
A newly discovered method for making two-dimensional materials could lead to new and extraordinary properties, particularly in a class of materials called nitrides, say the Penn State materials scientists who discovered the process.
UA organic semiconductor research could boost electronics
A team of UA researchers in engineering and chemistry has received $590,000 from the National Science Foundation to enhance the effectiveness of organic semiconductors for making ultrathin and flexible optoelectronics like OLED displays for TVs and mobile phones.
NREL theory establishes a path to high-performance 2-D semiconductor devices
Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have uncovered a way to overcome a principal obstacle in using two-dimensional (2-D) semiconductors in electronic and optoelectronic devices.

Related Semiconductor Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...