SwRI, UTSA researchers create innovative model for sCO2 power generation

July 15, 2019

SAN ANTONIO -- July 15, 2019 -- Southwest Research Institute and The University of Texas at San Antonio are collaborating to acquire data for a computational model for supercritical carbon dioxide (sCO2) energy generation. The work, led by Jacob Delimont of SwRI's Mechanical Engineering Division and Christopher Combs of UTSA's College of Engineering, is supported by a $125,000 grant from the Connecting through Research Partnerships (Connect) Program.

sCO2 is carbon dioxide held above a critical temperature and pressure, which causes it to act like a gas while having the density of a liquid. It's also nontoxic and nonflammable, and its supercritical state makes sCO2 a highly efficient fluid to generate power because small changes in temperature or pressure cause significant shifts in its density. Typically, current power plants use water as a thermal medium in power cycles. Replacing water with sCO2 increases efficiency by as much as 10 percent.

Because of the efficiency of sCO2 as a thermal medium, power plant turbomachinery can be one-tenth the size of conventional power plant components, providing the potential to shrink the environmental footprint as well as the construction cost of any new facilities.

Delimont and Combs plan to work with a direct-fired sCO2 cycle, which involves adding fuel and oxygen directly into the CO2 stream, causing it to combust, release heat, and create sCO2.This new type of power cycle allows for higher efficiency and lower greenhouse gas emissions.

"This power cycle allows for the capture of 100 percent of the CO2 emissions that would otherwise end up in our atmosphere," Delimont said. "The captured CO2 has many potential uses, including several applications in the oil and gas industry and even the carbonation in everyday soft drinks."

The challenge the team faces is that direct-fired sCO2 power generation is such a new technology that very little is known about the combustion process. To accomplish their goal, Delimont and Combs will collaborate on collecting data to validate a computational model for an sCO2 combustor.

"The data for the model doesn't exist, so first we're going to acquire it," Delimont said.

To visualize the burning of the sCO2 fuel, UTSA will supply optical lenses and laser systems as well as Combs' expertise in the optical techniques needed to visualize the flame in the direct-fire combustor.

"Once we can visualize the combustion process, we can use computational models to design the necessary combustion equipment to make this power generation process a reality," Delimont said.

The Connecting through Research Partnerships Program sponsored by the Office of the Vice President for Research, Economic Development, and Knowledge Enterprise at UTSA and the Executive Office at SwRI, is a grant opportunity offered to enhance greater scientific collaboration between the two institutions and to increase both UTSA's and SwRI's research-funding base with cross-campus collaborative programs.

For more information, visit https://www.swri.org/industries/propulsion-technologies.

Southwest Research Institute

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.