Nav: Home

Improving heat recycling with the thermodiffusion effect

July 15, 2019

Absorption heat transformers can effectively reuse the waste heat generated in various industries. In these devices, specialised liquids form thin films as they flow downward due to gravity. These liquid films can absorb vapour, and the heat is then extracted by a coolant so that it can be used in future processes. So far, however, there has been little research into how the performance of these films is influenced by the thermodiffusion effect - a behaviour seen in mixtures, where different types of mixture respond differently to the same temperature gradient. In a study recently published in EPJ E, researchers from the Fluid Mechanics group at Mondragon University and Tecnalia in Spain, led by M. M. Bou-Ali at Mondragon University, pooled their expertise in transport phenomena and absorption technology. Together, they explored for the first time the influence of the thermodiffusion property on the absorption, temperature and concentration profiles of falling films.

With the industrial sector currently producing vast amounts of waste heat, the study is part of a growing effort to increase its efficiency by recycling unused heat. The researchers discovered that when the mass transfer of different mixture components varies due to the thermodiffusion effect, as is seen in a liquid with a negative thermodiffusion coefficient (water-lithium bromide), the absorption of surrounding vapours can be increased. They also found that the absorption in the films changes significantly as they flow down, due to widely varying temperatures and concentrations. The team arrived at their conclusions by incorporating a variety of thermodiffusion effect equations into numerical models, and subsequently calculating the resulting degrees of vapour absorption in the films.

Since a third of our total energy consumption is currently in industrial processes, heat exchange devices are becoming more and more important to increasing their efficiency by recycling large amounts of heat. The work, therefore, offers valuable new insights into how the performance of falling film absorbers could be improved in the future.
-end-
Reference

P. Fernandez de Arroiabe, A. Martinez-Urrutia, X Peña, M. Martinez-Agirre, M. M. Bou-Ali (2019), On the thermodiffusion effect in vertical plate heat exchangers, Eur. Phys. J. E 42:85. DOI 10.1140/epje/i2019-11850-7

Springer

Related Research Articles:

More Research News and Research Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.