Nav: Home

Reducing seizures by removing newborn neurons

July 15, 2019

Removing new neurons born after a brain injury reduces seizures in mice, according to new research in JNeurosci. This approach could potentially help prevent post-injury epilepsy.

New neurons generated following a brain injury often do not develop normally. Left untreated, these cells may contribute to the development of epilepsy.

Jenny Hsieh and colleagues at the University of Texas at San Antonio continually removed new neurons that formed during the eight weeks following a seizure in mice. Hsieh's team monitored seizure activity in the mice and observed that the treated mice experienced a 65 percent reduction in seizures compared to the untreated mice. This effect required more than four weeks of continuous treatment.

Although these findings support a role for newborn neurons in epilepsy development, they also suggest additional factors are involved. Further research may bring us closer to complete prevention of injury-induced epilepsy.
-end-
Manuscript title: Targeting Seizure-Induced Neurogenesis in a Clinically-Relevant Time-Period Leads to Transient but Not Persistent Seizure Reduction

Please contact media@sfn.org for full-text PDF and to join SfN's journals media list.

About JNeurosci

JNeurosci, the Society for Neuroscience's first journal, was launched in 1981 as a means to communicate the findings of the highest quality neuroscience research to the growing field. Today, the journal remains committed to publishing cutting-edge neuroscience that will have an immediate and lasting scientific impact, while responding to authors' changing publishing needs, representing breadth of the field and diversity in authorship.

About The Society for Neuroscience

The Society for Neuroscience is the world's largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.

Society for Neuroscience

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

Breaking Bongo
Deep fake videos have the potential to make it impossible to sort fact from fiction. And some have argued that this blackhole of doubt will eventually send truth itself into a death spiral. But a series of recent events in the small African nation of Gabon suggest it's already happening.  Today, we follow a ragtag group of freedom fighters as they troll Gabon's president - Ali Bongo - from afar. Using tweets, videos and the uncertainty they can carry, these insurgents test the limits of using truth to create political change and, confusingly, force us to ask: Can fake news be used for good? This episode was reported and produced by Simon Adler. Support Radiolab today at Radiolab.org/donate.