Dietary quality influences microbiome composition in human colonic mucosa

July 15, 2019

It is well established that diet influences health and disease, but the mechanisms underlying this effect are not fully understood. Shedding light on the diet-health connection, a team led by researchers at Baylor College of Medicine reports today in The American Journal of Clinical Nutrition an association between diet quality and microbiome composition in human colonic mucosa. The researchers found that a high-quality diet is linked to more potentially beneficial bacteria; while a low-quality diet is associated with an increase in potentially harmful bacteria. They propose that modifying the microbiome through diet may be a part of a strategy to reduce the risk of chronic diseases.

"In this study, rather than looking at individual diets, we focused on dietary patterns as defined by the Healthy Eating Index (HEI)-2005 and how they relate to the microbiome," said corresponding author Dr. Li Jiao, associate professor of medicine-gastroenterology and member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine. "In a previous study, we found that HEI-2005 is associated with reduced risk of pancreatic cancer."

Diet is considered a principal factor influencing the structure of the microbial community in the gut, which in turn significantly affects the ability of beneficial or harmful microbes to colonize it. The human gut microbiome also influences nutrient uptake, synthesis of vitamins, energy harvest, chronic inflammation, carcinogen metabolism and the body's immune and metabolic response, factors that can affect disease risk, Jiao explained.

"One new contribution to this work is that we looked at the microbiome associated with colonic mucosa," Jiao said. "Most other studies of the human gut microbiome have used fecal samples. We looked at colon mucosal-associated microbiome because we know that this microbiome is different from that in the fecal samples, and it is said to be more related to human immunity and the host-microbiome interaction than the microbiome in fecal samples."

The researchers used next-generation sequencing techniques to analyze the type and abundance of bacteria present in colonic mucosal biopsies. The samples were obtained endoscopically from enrolled consenting 50- to 75-year-old participants who had a colonoscopy at the Michael E. DeBakey Veterans Affairs Medical Center in Houston between 2013 and 2017. The participants were polyp-free and seemingly healthy. They reported their dietary consumption using a food frequency questionnaire before the colonoscopy.

Dietary quality significantly influences the colon's microbiome

Jiao and her colleagues found that a good-quality diet as the one recommended by the Dietary Guidelines for Americans to be high in fruits, vegetables and whole grains, and low in added sugar, alcoholic beverages and solid fats is associated with higher abundance of beneficial bacteria such as those with anti-inflammatory properties. A poor-quality diet, on the other hand, is associated with more potentially pathogenic bacteria, such as Fusobacteria, which has been linked to colorectal cancer.

The researchers propose that the effect diet has on the structure of bacterial communities in human colonic mucosa can lead to modifications of innate immunity, inflammation and the risk of chronic diseases.

Their next step is to confirm the study findings in a larger study population. In addition, they want to investigate how bacterial products, or metabolites, such as short-chain fatty acids or secondary bile acids, can modify tissue microenvironment into one that either inhibits or promotes tumor growth or development of other diseases. Also, Jiao and her colleagues are interested in investigating how the unfavorable gut microbiome in individuals consuming a poor diet would respond to tailored dietary intervention using diet, pre- or probiotics, as previous studies have produced mixed results.

"Other factors, such as aging, genetics or certain medications, also influence the risk of disease but we cannot modify them," Jiao said. "Diet, on the other hand, can be modified and thus provides a strategy to develop a microbiome that promotes healthy living. We suggest that modifying the microbiome through diet may be a part of a plan to reduce the risk of chronic diseases."
-end-
Other contributors to this work include Yanhong Liu, Nadim J. Ajami, Hashem B. El-Serag, Clark Hair, David Y. Graham, Donna L. White, Liang Chen, Zhensheng Wang, Sarah Plew, Jennifer Kramer, Rhonda Cole, Ruben Hernaez, Jason Hou, Nisreen Husain, Maria E. Jarbrink-Sehgal, Fasiha Kanwal, Gyanprakash Ketwaroo, Yamini Natarajan, Rajesh Shah, Maria Velez, Niharika Mallepally and Joseph F. Petrosino. The authors are affiliated with one of more of the following institutions: Baylor College of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Texas Medical Center Digestive Disease Center.

This study was supported by the Cancer Prevention and Research Institute of Texas (RP140767), Gillson Longenbaugh Foundation, Golfers Against Cancer and the NIH grant K07CA181480. Partial support was provided by facilities and resources of the Houston Veterans Affairs Health Services Research & Development Center for Innovations in Quality, Effectiveness and Safety (CIN13-413). Further support came from a Research Training Grant from the Cancer Prevention and Research Institute of Texas (RP160097).

Baylor College of Medicine

Related Microbiome Articles from Brightsurf:

The microbiome of Da Vinci's drawings
The microbiome study of seven drawings from Leonardo Da Vinci reveals that conservation work, geographical location, and past contaminations leave invisible traces on drawings despite their optimal storage conditions: a novel aspect of art objects that could be monitored to establish a bioarchive of our artistic heritage.

Managing the microbiome raises new hope for autism
Analysis of 619 plasma metabolites in a new study show a distinctive metabolic profile in autistic children prior to microbial transfer therapy The procedure helps modify gut microbiota, improving symptoms gastrointestinal and behavioral symptoms of the disease.

Discoveries reshape understanding of gut microbiome
The findings redefine how the so-called gut microbiome operates and how our bodies coexist with some of the 100 trillion bacteria that make it up.

A new tool for modeling the human gut microbiome
MIT engineers designed a device that replicates the lining of the colon.

How viruses and bacteria balance each other in the gut microbiome
A tiny arms race between bacteria and the viruses that attack them inside the gut could eventually offer a new way to treat out-of-balance microbiomes.

Microbiome confers resistance to cholera
Many parts of the world are in the midst of a deadly pandemic of cholera, an extreme form of watery diarrhea.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Gut microbiome influences ALS outcomes
Harvard University scientists have identified a new gut-brain connection in the neurodegenerative disease ALS.

The microbiome controls immune system fitness
Working alongside colleagues in Mainz, Bern, Hannover and Bonn, researchers from Charité -- Universitätsmedizin Berlin, the Berlin Institute of Health (BIH) and the German Rheumatism Research Center Berlin (DRFZ) were able to show how the microbiome helps to render the immune system capable of responding to pathogens.

Researchers uncover the moscow subway microbiome
Recently, a group of ITMO University researchers has looked into the microbiome of the Moscow Subway.

Read More: Microbiome News and Microbiome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.