Bed bugs modify microbiome of homes they infest

July 15, 2020

Homes infested by bed bugs appear to have different bacterial communities - often referred to as microbiomes - than homes without bed bugs, according to a first-of-its-kind study from North Carolina State University. In addition, once bed bug infestations were eradicated, home microbiomes became more similar to those in homes that never had bed bugs. The findings could be an important step in lifting the veil on the factors involved in indoor environmental quality and how to improve it.

Microbes can affect indoor air quality. So NC State entomologists Coby Schal and Madhavi Kakumanu wanted to learn more about the microbiomes of bed bugs, whether bed bugs can shape the microbial community in homes they infest, and whether eliminating bed bugs changes the microbiome of homes that were once infested.

The study, held in an apartment complex in Raleigh, compared the microbiomes of bed bugs with the microbiomes in the household dust of infested homes as well as the microbiomes in apartments that had no bed bugs. Nineteen infested homes were studied over the course of four months; seven were treated with heat to eliminate bed bugs after the initial sample was taken, while 12 infested homes were treated after one month. These homes were compared with 11 homes that had no bed bugs.

The results showed similarities between the microbiomes of bed bugs and the dust-associated microbiomes of infested homes, mostly through the presence of Wolbachia, a symbiotic bacterium that comprises the majority of the bacterial abundance in bed bugs. Bed bug and infested home microbiomes differed significantly from the microbial communities of uninfested homes.

"There is a link between the microbiome of bed bugs and the microbiome of household dust in bed bug infested homes," said Schal, the Blanton J. Whitmire Distinguished Professor of Entomology at NC State and co-corresponding author of the paper. "No previous study has reported the impact of chronic pest infestations on indoor microbial diversity."

The study also showed that, after bed bugs were eliminated, infested home microbiomes gradually became more like those in homes without bed bugs.

"The elimination of the bed bugs resulted in gradual shifts in the home microbial communities toward those of uninfested homes," Kakumanu, an NC State research scholar in Schal's lab and co-corresponding author of the study, said. "This paper is the first experimental demonstration that eliminating an indoor pest alters the indoor microbiome toward that of uninfested homes."

"Bed bug infestations are problematic in many homes in both developed and developing countries," Schal said. "There is a critical need to investigate infestations from the perspective of indoor environmental quality, and this paper represents a first step toward this end." 
-end-
The study appears in Science of the Total Environment. Funding for the work came from NC State's Blanton J. Whitmire endowment, as well as the U.S. Department of Housing and Urban Development Healthy Homes program (NCHHU0017-13, NCHHU0053-19), the Alfred P. Sloan Foundation (2013-5-35 MBE) and the National Science Foundation (DEB-1754190). Seed funds came from NC State's Center for Human Health and the Environment (CHHE, P30ES025128), funded by the National Institute of Environmental Health Sciences.

Note to editors: An abstract of the paper follows.

"Bed bugs shape the indoor microbial community composition of infested homes"

Authors: Madhavi L. Kakumanu, Alexis M. Barbarin, Richard G. Santangelo and Coby Schal, North Carolina State University: Zachary C. DeVries, University of Kentucky

Published: July 7, 2020 in Science of the Total Environment

DOI: 10.1016/j.scitotenv.2020.140704

Abstract: Indoor pests, and the allergens they produce, adversely affect human health. Surprisingly, however, their effects on indoor microbial communities have not been assessed. Bed bug (Cimex lectularius) infestations pose severe challenges in elderly and low-income housing. They void large amounts of liquid feces into the home environment, which might alter the indoor microbial community composition. In this study, using bed bug-infested and uninfested homes, we showed a strong impact of bed bug infestations on the indoor microbial diversity. Floor dust samples were collected from uninfested and bed bug-infested homes and their microbiomes were analyzed before and after heat interventions that eliminated bed bugs. The microbial communities of bed bug-infested homes were radically different from those of uninfested homes, and the bed bug endosymbiont Wolbachia was the major driver of this difference. After bed bugs were eliminated, the microbial community gradually shifted toward the community composition of uninfested homes, strongly implicating bed bugs in shaping the dust-associated environmental microbiome. Further studies are needed to understand the viability of these microbial communities and the potential risks that bed bug-associated microbes and their metabolites pose to human health.

North Carolina State University

Related Microbiome Articles from Brightsurf:

The microbiome of Da Vinci's drawings
The microbiome study of seven drawings from Leonardo Da Vinci reveals that conservation work, geographical location, and past contaminations leave invisible traces on drawings despite their optimal storage conditions: a novel aspect of art objects that could be monitored to establish a bioarchive of our artistic heritage.

Managing the microbiome raises new hope for autism
Analysis of 619 plasma metabolites in a new study show a distinctive metabolic profile in autistic children prior to microbial transfer therapy The procedure helps modify gut microbiota, improving symptoms gastrointestinal and behavioral symptoms of the disease.

Discoveries reshape understanding of gut microbiome
The findings redefine how the so-called gut microbiome operates and how our bodies coexist with some of the 100 trillion bacteria that make it up.

A new tool for modeling the human gut microbiome
MIT engineers designed a device that replicates the lining of the colon.

How viruses and bacteria balance each other in the gut microbiome
A tiny arms race between bacteria and the viruses that attack them inside the gut could eventually offer a new way to treat out-of-balance microbiomes.

Microbiome confers resistance to cholera
Many parts of the world are in the midst of a deadly pandemic of cholera, an extreme form of watery diarrhea.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Gut microbiome influences ALS outcomes
Harvard University scientists have identified a new gut-brain connection in the neurodegenerative disease ALS.

The microbiome controls immune system fitness
Working alongside colleagues in Mainz, Bern, Hannover and Bonn, researchers from Charité -- Universitätsmedizin Berlin, the Berlin Institute of Health (BIH) and the German Rheumatism Research Center Berlin (DRFZ) were able to show how the microbiome helps to render the immune system capable of responding to pathogens.

Researchers uncover the moscow subway microbiome
Recently, a group of ITMO University researchers has looked into the microbiome of the Moscow Subway.

Read More: Microbiome News and Microbiome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.