AI model to forecast complicated large-scale tropical instability waves in Pacific Ocean

July 15, 2020

Large-scale oceanic phenomena are complicated and often involve many natural processes. Tropical instability wave (TIW) is one of these phenomena.

Pacific TIW, a prominent prevailing oceanic event in the eastern equatorial Pacific Ocean, is featured with cusp-shaped waves propagating westward at both flanks of the tropical Pacific cold tongue.

The forecast of TIW has long been dependent on physical equation-based numerical models or statistical models. However, many natural processes need to be considered for understanding such complicated phenomena.

Recently, a research team led by Prof. LI Xiaofeng from the Institute of Oceanology of the Chinese Academy of Sciences (IOCAS) studied this type of complex oceanic phenomena through artificial intelligence (AI) technologies.

The team member includes ZHENG Gang from the Second Institute of Oceanology of Ministry of Natural Resources, ZHANG Ronghua from IOCAS, and LIU Bin from Shanghai Ocean University.

They used satellite data-driven deep learning model to forecast the complicated thousand-kilometer scale TIW for the first time in the world. Their study was published in Science Advances on July 15.

Basic rules governing the complicated oceanic phenomena are usually profoundly hidden in the fast-increasing satellite remote sensing big data itself. They need to be dug up by powerful information mining techniques such as deep learning in the AI field.

"AI technology may lead to a promising alternative for modeling complicated oceanic phenomena and circumventing the difficulties faced by traditional numerical models," said Prof. LI.

In this work, the researchers developed a deep learning model for forecasting sea surface temperature (SST) field associated with TIW based on current and previous satellite-derived SST data.

The long-term test of nine-year SST data showed that the model efficiently and accurately forecasted SST evolution and captured TIW propagation's spatial and temporal variation.

The study demonstrates that a purely data-driven and AI-based information mining paradigm can be a robust and promising way to model and forecast complicated oceanic phenomena in the satellite remote sensing Big Data Era.

"AI-based models, statistical models, and traditional numerical models can complement each other and provide a novel perspective for studying complicated oceanic features," said Prof. LI.

A review article by Prof. LI's group was published in National Science Review on March 19, which systematically reviewed deep-learning-based information mining from ocean remote-sensing imagery.

Chinese Academy of Sciences Headquarters

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to