Self-assembly of new microstructured material defies textbook physics

July 15, 1999

Physicists from the Institute for Medicine and Engineering (IME) at the University of Pennsylvania have found a new class of materials that self-assemble into flat, two-dimensional "crystallites" made from tiny plastic beads the size of bacteria. Laurence Ramos, PhD, a postdoctoral fellow in the physics department, and her colleagues at IME and the University of Delaware used membranes similar to soap bubbles as templates to direct the assembly of clusters of the beads into an intriguing new microstructured material. Along the way, the team uncovered a surprise: Under the right conditions, their beads seemed to defy the basic physical principle that oppositely charged objects attract. Their findings appear in this week's issue of Science.

Electrostatic self-assembly of objects onto membranes is a relatively new technique with such potential biological applications as DNA and protein chips, gene-delivery vehicles, and industrial catalysts. The researchers had long-studied the components of their new structures separately, but nothing in their experience prepared them for the highly organized structures Ramos saw when the two were mixed. "The controlled manufacture of these microarrays could mimic and exploit the remarkable organization seen in many natural biomaterials," says coauthor Philip Nelson, PhD, a professor of physics at Penn.

The membrane portion of the material is essentially a thin, positively charged soaplike bubble. The surface of the bubble serves as a temporary template on which the raft of negatively charged spheres assembles. In many cases, the positively charged membrane attracted only a few dozen negatively charged spheres, then repelled all others. "At this point there was a lot of head-scratching, to put it mildly," says Nelson. "Every high-school student is taught that oppositely charged objects attract -- so how could the membrane switch from attracting to repelling the beads?" The key to the puzzle, say the researchers, is to remember that objects in water, such as the plastic beads, are surrounded by an invisible cloud of ions. Under the experiment's conditions, these ions spontaneously migrate in such a way as to overwhelm the membrane's own positive charge, and effectively reverse it in the region not covered by beads. The raft of attached beads then has a definite size, determined ultimately by the membrane's chemical composition. Far from being just an obscure footnote, the fact that the particle arrays can be self-limiting in this way seems to be crucial for the ultimate formation of the "crystallites."

More generally, understanding the basic strategies of self-assembly holds out the promise of far-reaching consequences in the design of future microstructured materials, for example in biosensors, drug carriers, and smart materials that respond to their environment.

Coauthors on the paper are Yi Chen, Tom C. Lubensky, and David A. Weitz from Penn, and Nily Dan and Helim Aranda-Espinoza from the University of Delaware. (Ramos now works at the Universite de Montpellier, France). The research was supported in part by grants from the National Science Foundation.
-end-
Editor's Note: Dr. Nelson can be reached at 215-898-7001, nelson@physics.upenn.edu, or http://www.physics.upenn.edu/nelson.

The University of Pennsylvania Medical Center's sponsored research and training ranks second in the United States based on grant support from the National Institutes of Health, the primary funder of biomedical research and training in the nation -- $201 million in federal fiscal year 1998. In addition, the institution continued to maintain the largest absolute growth in funding for research and training among all 125 medical schools in the country since 1991. News releases from the University of Pennsylvania Medical Center are available to reporters by direct e-mail, fax, or U.S. mail, upon request. They are also posted electronically to the medical center's home page (http://www.med.upenn.edu)



University of Pennsylvania School of Medicine

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.