Nerve cells' death different from other cells'

July 16, 2002

Writing in the July 12 issue of the journal Science, Hopkins-led researchers say they have identified in neurons a novel form of "programmed" cell death unlike those already known -- apoptosis and necrosis.

The finding, in mouse cells, defines for the first time a window of opportunity to prevent a neuron's death and perhaps find new targets to try to treat Parkinson disease, stroke and traumatic brain injury, says Valina Dawson, Ph.D., of Hopkins' Institute for Cell Engineering and professor of neuroscience at the Johns Hopkins School of Medicine.

"All cell death is 'programmed' in that it results from a particular series of events," says Dawson. "But up to a certain point, the outcome is not inevitable and interference with the process can prevent or delay cell death. Knowing when that window of opportunity closes is critical."

Building on knowledge that activation of an enzyme called PARP is a key initiator of neuron death, the scientists have learned that "apoptosis-inducing factor," or AIF, is the final blow. Made in nerve cells' mitochondria in response to excessive DNA damage and PARP activation, AIF is sent into the nucleus, immediately causing the cells' genetic material to collapse.

"AIF entering the nucleus seems to be the point of no return -- once it gets in, the cell is going to die no matter what you do," says Dawson. AIF needs help to escape the mitochondria, travel through the cell and enter the nucleus, she says, and identifying the molecules that accompany it should offer opportunities to interfere and potentially prevent the cell from dying.

PARP, or poly(ADP-ribose)polymerase, is known primarily as the "guardian of the genome," because it recognizes damaged DNA and prepares it for repair. However, in cells with too much damage to their DNA, PARP triggers a cascade of events that causes the cell to die. PARP-controlled cell death is the major death pathway for neurons, particularly in response to conditions like traumatic brain injury, Parkinson disease, and stroke, says Dawson.

In studying nerve cell death from these and other conditions, scientists around the world had noted that some markers of apoptosis, generically known as "programmed cell death," were present, but others were missing. Scientists knew mitochondria, cells' energy-producing factories, were involved, but no studies had linked a trigger of cell death in neurons to mitochondria.

"This study links PARP activation with mitochondrial function for the first time," says Dawson. "We thought AIF was a good candidate for that link, and we've shown that it's required for cell death after PARP activation, and conversely that PARP activation is required for its release from the mitochondria."

An intriguing finding was that AIF transfer to the nucleus came before release of a molecule called caspase, an initial step in classically defined apoptosis. Caspase is involved in PARP cell death, too, but at the very end of the road: almost like a mortician for the neuron, caspase packages up parts of the dying cell for destruction and recycling.

"The classic definitions of necrosis and apoptosis are meaningless in the nervous system because the terms were defined in tissues outside of it," says Dawson. "Cell death in the nervous system uses some of the pathways of necrosis and apoptosis, but in a slightly different sequence."

The scientists showed that preventing PARP activation and blocking AIF release protected cells from dying, but blocking caspase did not.

Other authors on the study are Seong-Woon Yu, Hongmin Wang, Marc Poitras, Carmen Coombs, and Ted Dawson, all of Hopkins; William Bowers and Howard Federoff of the University of Rochester; and Guy Poirier of Laval University Medical Research Center, Quebec.

The experiments were funded by grants from the National Institutes of Health, the Robert Packard Center for ALS Research at Johns Hopkins, the American Heart Association, and the Mary Lou McIlhaney Scholar Award.

Under an agreement between The Johns Hopkins University and Guilford Pharmaceuticals, Ted Dawson and Valina Dawson are entitled to a share of sales royalty received by the University from Guilford. Ted Dawson and the University own Guilford stock, and the University stock is subject to certain restrictions under University policy. The terms of this arrangement are being managed by the University in accordance with its conflict of interest policies.
On the Web:

Johns Hopkins Medical Institutions' news releases are available on an EMBARGOED basis on EurekAlert at and from the Office of Communications and Public Affairs' direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to On a POST-EMBARGOED basis find them at

Johns Hopkins Medicine

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to