Texas scientists reach out and touch molecules

July 16, 2002

COLLEGE STATION - A molecule - the smallest bit of any living substance - is no longer out of reach. Using haptic technology, researchers with the Texas Agricultural Experiment Station are literally getting in touch with the atomic particles in hopes of finding new cures for diseases.

"In order to design a new drug, you have to see how a chemical compound will fit. With this device not only will you see it, but you can feel it," said Dr. Edgar Meyer, a biochemist whose lab at Texas A&M University recently made a breakthrough in the ability to calculate the forces of movement within a molecule via an haptic device dubbed "Touché."

"Involving the extra sense of feeling for the chemist gives an advantage in designing drugs," he added.

Haptic, from the Greek word "to feel, "is a relatively new field of computer graphics.

Since its introduction in the 1960s, computer graphics have become much more attractive to the eye, but the information content is basically the same as 30 years ago, Meyer said, mainly because interactive devices like the mouse are inadequate.

"Haptics is the next step beyond the graphic interface - joining the computer and the human for the tactile, the touch, the feeling," he said. The device includes a hand-held baton which, when moved, interacts with an image on the computer screen to indicate what is being felt.

One application being studied elsewhere would enable a doctor to perform surgery via the Internet using the baton to "feel" the difference in soft tissue, hard tissue and bone, for example, on a patient who may be in another location but viewable on the computer screen.

Yet Meyer's lab looked even deeper.

With decades of molecular research experience aimed at human diseases, his team wondered how the molecule of a disease would "feel" when a substance was applied in order to block its ability to cause illness.

Simply speaking, a healthy molecule made up of various atoms has a mouth-like opening where a drug or inhibitor could bind. An uncontrolled, disease-causing molecule thus could be identified and blocked - an example of a drug acting at the molecular level, Meyer explained.

The inhibitor has to fit "like a lock and key," Meyer explained, to find the molecular structure of a target and then design blocks for it. The scientist has to "add and subtract atom to atom, eyeball to eyeball."

Dr. Stan Swanson, Experiment Station biochemist, was able to program the device to calculate the interaction with a large number of atoms while meeting "Touché's rapid cycle time.

Swanson figured out how to calculate a 50-atom drug molecule interacting with a biological receptor that has up to 600 atoms - a very large number of potential interactions that must be calculated in a very short period of time for "Touché to work. Jennifer Novak, a junior math major from Seymour, designed the computer's graphic interface for "Touché.

"Biological molecules are inheritantly very complex," Meyer said. "Molecules have bumpy surfaces, so you feel what it is like to go over the rough places in order to get it to fit into the right place. There is a noticeable repulsion when you are pushing again a molecule in the wrong place."

Meyer and his lab will now look at how other classes of molecules can be designed and ultimately hope to get "Touché into the hands of pharmacologists and medicinal chemists.

"Computers are here to help us serve mankind, and if we can address a serious challenge in the pharmacological industry for designing new drugs, then we can make their work easier and more productive," he said.
-end-
Writer: Kathleen Phillips, 979-845-2872, ka-phillips@tamu.edu
Contact: Dr. Edgar Meyer, 979-845-1744, e-meyer@tamu.edu

Texas A&M University

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.