Researchers locate tumor-suppressor gene in fruit flies that controls cell production, death

July 16, 2003

DALLAS - July 16, 2003 - UT Southwestern Medical Center at Dallas researchers have discovered a tumor-suppressor gene that, in fruit flies, simultaneously restricts cell proliferation and promotes cell death, a process that may also play an important role in the genesis of cancer in humans.

Removal of the gene, hippo, resulted in tumor formation in every organ of the fruit fly. The findings, which are currently online, will appear in an upcoming issue of Cell.

"This is one of the few genes that has been discovered that directly controls two pathways, cell proliferation and cell apoptosis, or cell death," said Dr. Duojia Pan, assistant professor of physiology and senior author of the study. "Sustained growth of cancer cells requires activation of the cell proliferation machinery and suppression of a system called the apoptotic failsafe mechanism. The combination of suppressed cell death and deregulated cell production is likely a key element in cancer."

The researchers identified hippo by screening the fruit fly, or drosophila, genome for mutations that promoted abnormal tissue growth.

To determine the relationship between hippo and a similar protein found in humans, the researchers replaced the tumor-suppressor gene in fruit flies with a protein in humans called MST2. This resulted in the reduction of tumors in the fruit flies, leading researchers to hypothesize that MST2 plays a similar role in human-tumor suppression.

"We hypothesize that this protein (MST2) may be inactivated in some humans, causing the onset of tumor growth. Tumor suppression is important in humans because it is required to restrict abnormal growth of tissues," said Dr. Pan, the Virginia Murchison Linthicum Scholar in Medical Research.

The researchers report also that hippo is linked to two other tumor-suppressing genes, Salvador and warts.

"These three tumor-suppression genes may define a tumor suppression pathway that coordinately regulates cell proliferation and apoptosis," Dr. Pan said. "This pathway may also be involved in the formation of tumors in mammals."

Current research suggests that the human counterpart of Salvador is mutated in several cancer-cell lines.

"Our findings will stimulate investigations of this tumor suppression pathway in human cancers," Pan added.

By studying fruit flies, scientists have the ability to perform more experiments than in human studies because the fruit fly genome is easily mutated. Fruit flies carry approximately 70 percent of the same disease genes as humans.

Dr. Pan is currently studying three other tumor-suppressor genes, including PTEN, Tuberous Sclerosis 1(TSC1) and Tuberous Sclerosis 2 (TSC2). These genes have previously been identified as tumor-suppressor genes in humans.

Other researchers on the study were Drs. Jixin Dong, Jianbin Huang, and Shian Wu, all postdoctoral researchers in physiology.
-end-
The study was supported by the National Institutes of Health, the American Heart Association and the American Cancer Society.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://lists.utsouthwestern.edu/mailman/listinfo/utswnews

UT Southwestern Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.