Graphene electrons share the heat

July 16, 2015

Graphene - a one-atom-thick sheet of carbon atoms - is known to be a very good electrical conductor. Therefore, a multitude of applications in modern nano-electronics are envisioned, ranging from highly efficient detectors for optical and wireless communications to transistors operating at very high speeds. A constantly increasing demand for telecommunication bandwidth requires even faster operation of electronic devices, pushing their response to shorter time ranges, as short as a picosecond (10-12 s, i.e. one thousandth of a billionth of a second).

A team of researchers from the Max Planck Institute for Polymer Research in collaboration with Klaas-Jan Tielrooij from ICFO- The Institute of Photonic Sciences, has discovered that electrical conduction in graphene on the picosecond timescale is governed by the same basic laws that describe the thermal properties of gases. For this, they applied to the graphene electrical fields oscillating at terahertz rates, i.e. one thousand billion oscillations per second.

The researchers found that the energy of ultrafast electrical currents passing through graphene is very efficiently converted into electron heat, making graphene electrons behave just like a hot gas: the heat is distributed evenly over all electrons. The rise in electronic temperature, caused by the passing currents, in turn has a strong effect on electrical conduction of graphene. The study entitled "Thermodynamic picture of ultrafast charge transport in graphene", has recently been published in Nature Communications.

Such a simple thermodynamic approach to the ultrafast electrical conduction in graphene will allow scientists and engineers to better understand and improve the performance of graphene-based nano-electronic devices such as ultra-high-speed transistors and photo-detectors.
-end-


ICFO-The Institute of Photonic Sciences

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.