Nav: Home

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

July 16, 2019

Irvine, Calif., July 16, 2019 - A new wireless transceiver invented by electrical engineers at the University of California, Irvine boosts radio frequencies into 100-gigahertz territory, quadruple the speed of the upcoming 5G, or fifth-generation, wireless communications standard.

Labeled an "end-to-end transmitter-receiver" by its creators in UCI's Nanoscale Communication Integrated Circuits Labs, the 4.4-millimeter-square silicon chip is capable of processing digital signals significantly faster and more energy-efficiently because of its unique digital-analog architecture. The team's innovation is outlined in a paper published recently in the IEEE Journal of Solid-State Circuits.

"We call our chip 'beyond 5G' because the combined speed and data rate that we can achieve is two orders of magnitude higher than the capability of the new wireless standard," said senior author Payam Heydari, NCIC Labs director and UCI professor of electrical engineering & computer science. "In addition, operating in a higher frequency means that you and I and everyone else can be given a bigger chunk of the bandwidth offered by carriers."

He said that academic researchers and communications circuit engineers have long wanted to know if wireless systems are capable of the high performance and speeds of fiber-optic networks. "If such a possibility could come to fruition, it would transform the telecommunications industry, because wireless infrastructure brings about many advantages over wired systems," Heydari said.

His group's answer is in the form of a new transceiver that leapfrogs over the 5G wireless standard - designated to operate within the range of 28 to 38 gigahertz - into the 6G standard, which is expected to work at 100 gigahertz and above.

"The Federal Communications Commission recently opened up new frequency bands above 100 gigahertz," said lead author and postgraduate researcher Hossein Mohammadnezhad, a UCI grad student at the time of the work who this year earned a Ph.D. in electrical engineering & computer science. "Our new transceiver is the first to provide end-to-end capabilities in this part of the spectrum."

Having transmitters and receivers that can handle such high-frequency data communications is going to be vital in ushering in a new wireless era dominated by the "internet of things," autonomous vehicles, and vastly expanded broadband for streaming of high-definition video content and more.

While this digital dream has driven technology developers for decades, stumbling blocks have begun to appear on the road to progress. According to Heydari, changing frequencies of signals through modulation and demodulation in transceivers has traditionally been done via digital processing, but integrated circuit engineers have in recent years begun to see the physical limitations of this method.

"Moore's law says we should be able to increase the speed of transistors - such as those you would find in transmitters and receivers - by decreasing their size, but that's not the case anymore," he said. "You cannot break electrons in two, so we have approached the levels that are governed by the physics of semiconductor devices."

To get around this problem, NCIC Labs researchers utilized a chip architecture that significantly relaxes digital processing requirements by modulating the digital bits in the analog and radio-frequency domains.

Heydari said that in addition to enabling the transmission of signals in the range of 100 gigahertz, the transceiver's unique layout allows it to consume considerably less energy than current systems at a reduced overall cost, paving the way for widespread adoption in the consumer electronics market.

Co-author Huan Wang, a UCI doctoral student in electrical engineering & computer science and an NCIC Labs member, said that the technology combined with phased array systems - which use multiple antennas to steer beams - facilitates a number of disruptive applications in wireless data transfer and communication.

"Our innovation eliminates the need for miles of fiber-optic cables in data centers, so data farm operators can do ultra-fast wireless transfer and save considerable money on hardware, cooling and power," he said.
-end-
TowerJazz and STMicroelectronics provided semiconductor fabrication services to support this research project.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

University of California - Irvine

Related Chip Articles:

Pancreas on a chip
'Islet-on-a-chip' offers continuous monitoring of insulin-producing cells, indicating whether they have therapeutic value and are suitable for transplant.
Designing a better low-fat potato chip
Munching on low-fat potato chips might reduce the guilt compared with full-fat versions, but many people don't find the texture as appealing.
Turbo chip for drug development
In spite of increasing demand, the number of newly developed drugs decreased continuously in the past decades.
Growing embryonic tissues on a chip
Researchers at EPFL have developed a method to stimulate human stem cells to organize themselves into ordered layers of different cell types.
On-chip, electronically tunable frequency comb
Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences and Stanford University have developed an integrated, on-chip frequency comb that is efficient, stable and highly controllable with microwaves.
New progress toward chip-based ghost imaging
For the first time, researchers have shown that the non-conventional imaging method known as ghost imaging can be performed using a low-cost, chip-based light-illuminating device.
Programming light on a chip
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can store light and electrically control its frequency (or color) in an integrated circuit.
Testing new drugs with 'ALS-on-a-chip'
In an advance that could help scientists develop and test new drugs for amyotrophic lateral sclerosis (ALS), MIT engineers have developed the first 3-D human tissue model of the interface between motor neurons and muscle fibers, known as the neuromuscular junction.
Lung-on-a-chip simulates pulmonary fibrosis
New biotechnology reported in the journal Nature Communications could make testing potential medicine for pulmonary fibrosis, one of the most common and serious forms of lung disease, quicker and less expensive.
Ingestible 'bacteria on a chip' could help diagnose disease
MIT researchers have built an ingestible sensor equipped with genetically engineered bacteria that can diagnose bleeding in the stomach or other gastrointestinal problems.
More Chip News and Chip Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.