Human pancreas on a chip opens new possibilities for studying disease

July 16, 2019

CINCINNATI--Scientists created human pancreas on a chip that allowed them to identify the possible cause of a frequent and deadly complication of cystic fibrosis (CF) called CF-Related Diabetes, or CFRD.

It may be feasible to also use the small two-chambered device, which features bioengineered human pancreatic organoids to study the causes of non-CF-related conditions such as type 1 and 2 diabetes, according to researchers at Cincinnati Children's Hospital Medical Center, who report findings in Nature Communications.

First, however, the scientists want to see if their device can help people with CF--a genetic lung disease caused by a mutation in the CFTR gene. The mutation leads to a water and salt imbalance on cell surfaces that clogs the lungs with thick mucus.

As people with CF get older, they become increasingly at risk for CFRD, according to Anjaparavanda Naren, PhD, the study's principal investigator and Director of the Cystic Fibrosis Research Center (Division of Pulmonary Medicine). Making matters worse is that until now there hasn't been an effective way to study CFRD in the lab to look for better treatments.

"Mouse models of CF don't faithfully recreate CF-Related Diabetes in the lab, and it wasn't possible to study the disease at the depth we achieved in this study," said Naren. "Our technology closely resembles the human pancreas and potentially may help us find therapeutic measures to manage glucose imbalance in people with CF, which is linked to increased illness and death."

The in vitro chip technology can be used to study CFRD and glucose imbalance in specific individuals with the condition, creating the potential for diagnosing different disease manifestations on a highly personalized basis. The chip can help assay variability in the glucose measures of different people, determine correlation of glucose levels with the CFTR mutation type, and test small-molecule interventions.

Chipping Away at CFTR Conundrum

Although mutations in the CFTR gene are known to cause cystic fibrosis, its role in CFRD is unclear. To answer that question, the researchers started by isolating pancreatic ductal epithelial cells and pancreatic islets donated by surgical patients.

The ductal organoids were cultured in a transparent dual-chamber called a micro?uidic device, which contained specific biochemical solutions to generate the pancreas-on-a-chip. Ductal epithelial cells were cultured in the top chamber and pancreatic islet cells were in the bottom chamber, separated by a thin layer of porous membrane that allowed the different chambers to interact.

The cells grew and expanded into three-dimensional pancreatic organs that mimicked cell-to-cell communications and fluid exchange, similar to the function of a naturally developed human pancreas.

When the researchers tested pancreas-on-a-chip by disrupting CFTR gene expression, it impaired cell-to cell communication, fluid exchange and negatively affected endocrine function. This caused an insulin deficiency and recreated the CFRD disease process similar to that observed in the pancreas of a person, Researchers said this confirmed that the CFTR gene has a direct role in regulating insulin secretion and causing diabetes in people with CF.

Microfluidic devices have existed since 1979. But innovations in their design and functionality, especially since the advent of organoid technology, now allow researchers to bioengineer human organ tissues and mimic the function of natural organs in a laboratory setting.

Next Steps

The research team, which includes study first author and research associate Kyu Shik Mun, PhD, now will use the devices in a pilot study to test FDA-approved drugs that modulate CFTR gene expression. The goal will be to determine how well different CFTR drugs can slow or reverse lab-simulated CFRD.
Also collaborating was co-corresponding study author Jamie Nathan, MD, surgical director of the Pancreas Care Center at Cincinnati Children's.

Funding support for the study came in part from the National Institutes of Health (DK080834, DK093045, P30DK117467) and the Cystic Fibrosis Foundation (MUN18F0, NAREN14XX0).

Cincinnati Children's Hospital Medical Center

Related Diabetes Articles from Brightsurf:

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.

Read More: Diabetes News and Diabetes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to