UMN researcher identifies differences in genes that impact response to cryptococcus infection

July 16, 2019

MINNEAPOLIS, MN- July 15, 2019 - Cryptococcus neoformans is a fungal pathogen that infects people with weakened immune systems, particularly those with advanced HIV/AIDS. New University of Minnesota Medical Research could mean a better understanding of this infection and potentially better treatments for patients.

In "Identification of Pathogen Genomic Differences That Impact Human Immune Response and Disease during Cryptococcus neoformans Infection" published in the journal MBio by American Society for Microbiology, Kirsten Nielsen, PhD, Professor, Department of Microbiology and Immunology, University of Minnesota, Medical School and colleagues were the first to examine how Cryptococcus genes impact the disease using human data.

After her last study, which found that the pathogen was driving the outcome of the Cryptococcus infection, Nielsen went on to examine the underlying genetic differences in her current study.

"We looked at differences in disease between patients - whether the patient lived or died, how the patient's immune system responded to the infection, and whether the antifungal drug treatment worked well - and we asked 'How do genetic differences in the Cryptococcus strains impact the disease variables?'" explained Nielsen.

The study found that there are 40 genes that are crucial to the ability of Cryptococcus to change the outcome of human disease, which have never before been identified as important. These genes give researchers a new set of information that they've never had before.

"We can take this new information generated using the human data and show how the genes work in other models," said Nielsen. "When we deleted the genes, it changed the ability of Cryptococcus to cause disease in a model system, so we know that they are important in disease."

Nielsen and her colleagues hope that identifying which versions of genes are important for patient survival will ultimately lead to better treatment of patients.

"We hope that this will have clinical benefits in the future. If we can figure out why certain strains are more deadly, and identify which patients have those strains, we can treat them differently. This will hopefully decrease reliance on toxic antifungals," said Katrina Jackson, a Graduate Student in the University of Minnesota Medical School, who was involved in the project.
-end-
About the University of Minnesota Medical School

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

University of Minnesota Medical School

Related Microbiology Articles from Brightsurf:

79 Fellows elected to the American Academy of Microbiology
In January of 2015, the American Academy of Microbiology elected 79 new Fellows.

New discovery in the microbiology of serious human disease
Previously undiscovered secrets of how human cells interact with a bacterium which causes a serious human disease have been revealed in new research by microbiologists at The University of Nottingham.

4 cells turn seabed microbiology upside down
With DNA from just four cells, researchers reveal how some of the world's most abundant organisms play a key role in carbon cycling in the seabed.

87 scientists elected to the American Academy of Microbiology
Eighty-seven microbiologists have been elected to Fellowship in the American Academy of Microbiology.

Tips from the journals of the American Society for Microbiology
This release includes information about these articles: Specific Bacterial Species May Initiate, Maintain Crohn's; Bacteria Involved in Sewer Pipe Corrosion Identified; Antibodies to Immune Cells Protect Eyes In Pseudomonas Infection; Dangerous Form of MRSA, Endemic In Many US Hospitals, Increasing in UK.

Tips from the journals of the American Society for Microbiology
Upcoming articles from the journals of the American Society for Microbiology include:

Microbiology brought to life in Nottingham
Antimicrobial insect brains, mouth bacteria behaving badly and the hundreds of microbial communities that lurk in household dust are just some of the highlights at the Society for General Microbiology's autumn meeting in Nottingham next week.

Tips from the journals of the American Society for Microbiology
The following are tips from the journals of the American Society for Microbiology:

Tips from the journals of the American Society for Microbiology
The following are tips from the Journals of the American Society for Microbiology:

New text focuses on microbiology of historic artifacts
Historic and culturally important artifacts, like all materials, are vulnerable to microbial attack.

Read More: Microbiology News and Microbiology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.