Singapore scientists uncover mechanism behind development of viral infections

July 16, 2019

A team of researchers from the SingHealth Duke-NUS Academic Medicine Centre's Viral Research and Experimental Medicine Centre (ViREMiCS) found that immune cells undergoing stress and an altered metabolism are the reasons why some individuals become sick from viral infections while others do not, when exposed to the same virus.

The findings, published in top medical journal Nature Medicine, have important implications for the prevention and treatment of infectious diseases caused by flaviviral infections such as dengue fever, congenital Zika syndrome and yellow fever. Flaviviral infections, a family of virus infections transmitted by mosquitoes and ticks, are major health concerns as they spread rapidly and lack licensed treatments.

Most viral infections result in a range of outcomes even when individuals are infected with the same amount of virus in their blood. For example, up to two-thirds of all dengue virus infections result in no symptoms, while the remaining one-third go on to develop dengue fever and even fewer progress to severe dengue. Understanding why this happens could lead to new ways of preventing disease and reduce the burden of some viral diseases.

"We investigated why some individuals do not get sick despite being infected with the same virus, while others develop symptoms and infections. Understanding the molecular events that lead to development of symptoms could lead to new prevention and treatment methods for infectious diseases worldwide," said Professor Ooi Eng Eong, Deputy Director of the Emerging Infectious Diseases (EID) Programme, Duke-NUS Medical School and Professor, SingHealth Duke-NUS Global Health Institute. Prof Ooi is also Co-director of ViREMiCS, Professor at the Saw Swee Hock School of Public Health and the Department of Microbiology & Immunology, National University of Singapore and the corresponding author of this study.

The team conducted two clinical trials involving more than 100 healthy adults using the yellow fever vaccine, one of the most effective vaccines in the world with an excellent safety profile. The team analysed the blood profiles of the volunteers immediately before and after vaccination, and found that individuals whose blood cells had increased levels of stress from protein production and altered metabolism before vaccination went on to develop flu-like symptoms after vaccination. Increased stress and altered metabolism resulted in earlier than expected activation of the immune response that was linked with development of symptoms.

"Our findings show that increased levels of stress and altered metabolism of an individual's immune cells are factors that make one prone to developing symptoms during an infection. Correspondingly, this tells us that immune cells and metabolic pathways could be useful targets to develop treatments for yellow fever or other flaviviral infections," said Associate Professor Jenny Low, Senior Consultant at the Department of Infectious Diseases, Singapore General Hospital and Co-Director of ViREMiCS. Dr Low is also Associate Professor at Duke-NUS' EID Programme and co-corresponding author of this study.

These findings also imply that preventing conditions known to place cells under increased stress and altered metabolism, such as obesity, could prevent disease from viral infections.

The team is currently starting another clinical trial in 2020 to test if suppressing the early immune response can reduce the likelihood of getting sick from a viral infection.
-end-


Duke-NUS Medical School

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.