Nav: Home

Birds of a feather flock together to keep their options open, say scientists

July 16, 2019

Why did you choose your job? Or where you live? Scientists at the University of Warwick have discovered that it was probably to keep your options as open as possible - and the more we co-operate together, the more opportunities are available to us.

Using flocks of birds as a model, they have shown that birds of a feather will indeed flock together to maximise the information they have access to and to give them the most future options when flocking.

The discovery by Henry Charlesworth and his supervisor Professor Matthew Turner published on 15 July in Proceedings of the National Academy of Sciences and provides a clue to the emergence of social co-operation in animals by explaining how individuals gain greater advantages by working in groups. The research was partially funded by the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation.

The researchers sought to gain a better understanding of collective motion, like that seen in a flock of birds, a herd of animals, an insect swarm or a human crowd.

They created a computer simulation, using bird flocks as a model, in which the 'birds' perceived a visual representation of the world around them, as if through a simple retina. They then programmed them with an algorithm based on the principle of Future State Maximisation (FSM), so the 'birds' would move to maximise the number of different visual environments that they expect to be able to access in the future.

The way they move together resembled animals in several ways, including cohesion (they stick together), co-alignment (they fly in roughly the same direction as their neighbours) and collision suppression, none of which were specifically programmed into the model. This demonstrates that there is a fundamental advantage to the 'birds' in working together.

Professor Matthew Turner, from the University of Warwick Department of Physics, said: "We adopted a hypothesis that birds are agents that want to maximise their future freedom, and then we asked what the consequences are of that. It looks like it generates dynamics that are extremely similar, even at the quantitative level, to a bird flock. That begs the question of whether this principle is actually the fundamental organisational principle in birds, and possibly in all intelligent life?

"We start from this low-level principle and are able to predict that these agents will move together, what density they will target, what kind of level of order they'll target. All of these things look remarkably similar to what you get in animal systems."

The algorithm is similar to 'tree searches' that have been used for a number of years in applications like chess programs. Chess algorithms would build tree searches of future lines of play and then select those lines that give them the maximum future options, among other factors.

The discovery has applications in a host of fields such as in robotics, drone swarms, farming and even CGI graphics, where creating realistic swarms is seen as a gold standard.

This latest research also suggests that this principle may be a fundamental tool for information processing agents and perhaps help to define intelligence itself.

Professor Turner adds: "People should ask themselves how they make decisions in their own lives - do they make decisions instinctively or are they trying to optimise something?

"This is a deep question in science, the emergence of social co-operation. We would argue that having a social organisation like a bird flock, because you're all together and social, you collectively gain much more freedom than you would if you were an individual. If you are an individual you would live in a very boring world, you wouldn't be able to interact with your neighbours, or in the context of our society, to request tasks or provide services.

"The idea is that this principle of keeping your options open might be connected to intelligence, and as quantitative scientists we can build a model that shows us what the consequences of that are."
-end-
* 'Intrinsically motivated collective motion' published in PNAS, DOI: 10.1073/pnas.1822069116

Notes to editors:

Video animations showing Future State Maximisation available to download at: https://files.warwick.ac.uk/msturner/browse#Supplementary+Movies

To request a copy of paper contact pnasnews@nas.edu

University of Warwick

Related Birds Articles:

How birds evolved big brains
An international team of evolutionary biologists and paleontologists have reconstructed the evolution of the avian brain using a massive dataset of brain volumes from dinosaurs, extinct birds like Archaeopteryx and the great auk, and modern birds.
Microelectronics for birds
Ornithologists and physicists from St Petersburg University have conducted an interdisciplinary study together with colleagues from Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences and the Biological Station Rybachy of the Zoological Institute of the Russian Academy of Sciences.
Birds of a feather better not together
A new study of North American birds from Washington University in St.
Not-so-dirty birds? Not enough evidence to link wild birds to food-borne illness
Despite the perception that wild birds in farm fields can cause food-borne illness, a WSU study has found little evidence linking birds to E. coli, Salmonella and Campylobacter outbreaks.
Birds are shrinking as the climate warms
After 40 years of collecting birds that ran into Chicago buildings, scientists have been able to show that the birds have been shrinking as the climate's warmed up.
Diving birds follow each other when fishing
Diving seabirds watch each other to work out when to dive, new research shows.
Why do birds migrate at night?
Researchers found migratory birds maximize how much light they get from their environment, so they can migrate even at night. 
How can robots land like birds?
Birds can perch on a wide variety of surfaces, thick or thin, rough or slick.
Is wildfire management 'for the birds?'
Spotted owl populations are in decline all along the West Coast, and as climate change increases the risk of large and destructive wildfires in the region, these iconic animals face the real threat of losing even more of their forest habitat.
Feathers came first, then birds
New research, led by the University of Bristol, suggests that feathers arose 100 million years before birds -- changing how we look at dinosaurs, birds, and pterosaurs, the flying reptiles.
More Birds News and Birds Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.