Nav: Home

Women's stronger immune response to flu vaccination diminishes with age

July 16, 2019

Women tend to have a greater immune response to a flu vaccination compared to men, but their advantage largely disappears as they age and their estrogen levels decline, suggests a study from researchers at the Johns Hopkins Bloomberg School of Public Health.

The researchers, whose study appears July 12 in the journal npj Vaccines, evaluated responses to the flu vaccine in 50 adults age 18-45 years and 95 adults age 65 and older, and found that the women in the younger group had a stronger immune response compared to the older women and all men. Experiments in mice yielded similar results, and suggested that estrogen--levels of which lessen with age in females--boosts females' immune responses to flu vaccines, while testosterone lowers males' responses. The scientists expect that their results will be generalizable to other vaccines.

"We need to consider tailoring vaccine formulations and dosages based on the sex of the vaccine recipient as well as their age," says study senior author Sabra Klein, PhD, an associate professor in the Department of Molecular Microbiology and Immunology at the Bloomberg School.

Scientists have known that women tend to have stronger immune responses to vaccines, and also that the elderly tend to have weaker responses. Klein and colleagues in their study set out to get a better understanding of the interaction of these sex- and age-related differences.

First, they evaluated immune responses to the 2009 H1N1 influenza vaccine in 145 human volunteers--one group age 18-45 years, the other 65 and older. Analyzing key markers of the immune response, the researchers found that, on average, women in the younger group had a stronger response compared to both the men and the older women. The younger women had, for example, a jump in their levels of the important immune protein IL-6 that was almost three times greater than that seen in the younger men, and almost double that seen in older women. Measures of the anti-flu antibody response also were higher for the younger women compared to the men and the older women, though the greatest differences were between the younger and older women.

The team conducted a similar set of experiments in adult and aged mice and observed similar results. They also determined that the younger mice, compared to the older mice, were much better protected from a challenge with live flu virus--the younger female mice being best protected. This group, for example had much less flu-induced lung inflammation after the virus challenge.

In the mice and in the human volunteers, the younger females, as expected, had higher bloodstream levels of estradiol, one of the important estrogens, compared to the older, post-menopausal females. Similarly, the younger males had higher bloodstream levels of testosterone compared to the older males. A stronger vaccine response was linked to higher estradiol among the females and, more weakly, to lower testosterone among the younger males.

Klein and her colleagues found evidence that this association with sex hormone levels was causal. Removing the ovaries and testes of the mice to cut down estradiol and testosterone production eliminated the male/female differences in vaccine responses. When the scientists then artificially resupplied estradiol to some of the low-hormone female mice, the mice showed greater vaccine antibody responses. By contrast, resupplying testosterone to the castrated males caused them to have lower antibody responses.

"What we show here is that the decline in estrogen that occurs with menopause impacts women's immunity," Klein says. "Until now, this hasn't been considered in the context of a vaccine. These findings suggest that for vaccines, one size doesn't fit all--perhaps men should get larger doses, for example."

She and her colleagues are now investigating the molecular mechanisms by which estradiol and other estrogens boost the antibody response to vaccines.
-end-
"Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females" was written by Tanvi Potluri, Ashley Fink, Kristyn Sylvia, Santosh Dhakal, Meghan Vermillion, Landon vom Steeg, Sharvari Deshpande, Harish Narasimhan and Sabra Klein.

Funding for the study was provided by the National Institutes of Health (U54AG062333) and the Johns Hopkins Center of Excellence in Influenza Research and Surveillance (BAA-NIAID-DMID-NIHAI 2012154).

Johns Hopkins University Bloomberg School of Public Health

Related Immune Response Articles:

Discovering the early age immune response in foals
Researchers at the Cornell University College of Veterinary Medicine have discovered a new method to measure tiny amounts of antibodies in foals, a finding described in the May 16 issue of PLOS ONE.
Nixing the cells that nix immune response against cancer
For first time, study characterizes uptick of myeloid-derived suppressor cells in the spleens of human cancer patients, paving the way for therapies directed against these cells that collude with cancer.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Tailored organoid may help unravel immune response mystery
Cornell and Weill Cornell Medicine researchers report on the use of biomaterials-based organoids in an attempt to reproduce immune-system events and gain a better understanding of B cells.
Tweaking the immune response might be a key to combat neurodegeneration
Patients with Alzheimer's or other neurodegenerative diseases progressively loose neurons yet cannot build new ones.
Estrogen signaling impacted immune response in cancer
New research from The Wistar Institute showed that estrogen signaling was responsible for immunosuppressive effects in the tumor microenvironment across cancer types.
No platelets, no immune response
When a virus attacks our organism, an inflammation appears on the affected area.
Malaria: A genetically attenuated parasite induces an immune response
With nearly 3.2 billion people currently at risk of contracting malaria, scientists from the Institut Pasteur, the CNRS and Inserm have experimentally developed a live, genetically attenuated vaccine for Plasmodium, the parasite responsible for the disease.
New finding will help target MS immune response
Researchers have made another important step in the progress towards being able to block the development of multiple sclerosis and other autoimmune diseases.
Flu infection reveals many paths to immune response
A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways.

Related Immune Response Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.