Blood iron levels could be key to slowing ageing, gene study shows

July 16, 2020

Genes linked to ageing that could help explain why some people age at different rates to others have been identified by scientists.

The international study using genetic data from more than a million people suggests that maintaining healthy levels of iron in the blood could be a key to ageing better and living longer.

The findings could accelerate the development of drugs to reduce age-related diseases, extend healthy years of life and increase the chances of living to old age free of disease, the researchers say.

Scientists from the University of Edinburgh and the Max Planck Institute for Biology of Ageing in Germany focused on three measures linked to biological ageing - lifespan, years of life lived free of disease (healthspan), and being extremely long-lived (longevity).

Biological ageing - the rate at which our bodies decline over time - varies between people and drives the world's most fatal diseases, including heart disease, dementia and cancers.

The researchers pooled information from three public datasets to enable an analysis in unprecedented detail. The combined dataset was equivalent to studying 1.75 million lifespans or more than 60,000 extremely long-lived people.

The team pinpointed ten regions of the genome linked to long lifespan, healthspan and longevity. They also found that gene sets linked to iron were overrepresented in their analysis of all three measures of ageing.

The researchers confirmed this using a statistical method - known as Mendelian randomisation - that suggested that genes involved in metabolising iron in the blood are partly responsible for a healthy long life.

Blood iron is affected by diet and abnormally high or low levels are linked to age-related conditions such as Parkinson's disease, liver disease and a decline in the body's ability to fight infection in older age.

The researchers say that designing a drug that could mimic the influence of genetic variation on iron metabolism could be a future step to overcome some of the effects of ageing, but caution that more work is required.

The study was funded by the Medical Research Council and is published in the journal Nature Communications with DOI 10.1038/s41467-020-17312-3.

Anonymised datasets linking genetic variation to healthspan, lifespan, and longevity were downloaded from the publically available Zenodo, Edinburgh DataShare and Longevity Genomics servers.

Dr Paul Timmers from the Usher Institute at the University of Edinburgh, said: "We are very excited by these findings as they strongly suggest that high levels of iron in the blood reduces our healthy years of life, and keeping these levels in check could prevent age-related damage. We speculate that our findings on iron metabolism might also start to explain why very high levels of iron-rich red meat in the diet has been linked to age-related conditions such as heart disease."

Dr Joris Deelen from the Max Planck Institute for Biology of Ageing in Germany, said: "Our ultimate aim is to discover how ageing is regulated and find ways to increase health during ageing. The ten regions of the genome we have discovered that are linked to lifespan, healthspan and longevity are all exciting candidates for further studies."
-end-


University of Edinburgh

Related Genetic Variation Articles from Brightsurf:

How genetic variation gives rise to differences in mathematical ability
DNA variation in a gene called ROBO1 is associated with early anatomical differences in a brain region that plays a key role in quantity representation, potentially explaining how genetic variability might shape mathematical performance in children, according to a study published October 22nd in the open-access journal PLOS Biology by Michael Skeide of the Max Planck Institute for Human Cognitive and Brain Sciences, and colleagues.

Genetic variation unlikely to influence COVID-19 morbidity and mortality
A comprehensive search of genetic variation databases has revealed no significant differences across populations and ethnic groups in seven genes associated with viral entry of SARS-CoV-2.

Researchers find pronghorn exhibit little genetic variation despite landscape obstacles
While previous research shows landscape features such as major highways restrict the daily and seasonal movements of pronghorn and increase mortality risk, this study found little, if any, evidence that these barriers affect genetic connectivity among Wyoming pronghorn.

gnomAD Consortium releases its first major studies of human genetic variation
For the last eight years, the Genome Aggregation Database (gnomAD) Consortium (and its predecessor, the Exome Aggregation Consortium, or ExAC), has been working with geneticists around the world to compile and study more than 125,000 exomes and 15,000 whole genomes from populations around the world.

Individual genetic variation in immune system may affect severity of COVID-19
Genetic variability in the human immune system may affect susceptibility to, and severity of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19).

Genetic variation not an obstacle to gene drive strategy to control mosquitoes
New research from entomologists at UC Davis clears a potential obstacle to using CRISPR-Cas9 'gene drive' technology to control mosquito-borne diseases such as malaria, dengue fever, yellow fever and Zika.

Genetic variation gives mussels a chance to adapt to climate change
Existing genetic variation in natural populations of Mediterranean mussels allows them to adapt to declining pH levels in seawater caused by carbon emissions.

A genetic tug-of-war between the sexes begets variation
In species with sexual reproduction, no two individuals are alike and scientists have long struggled to understand why there is so much genetic variation.

Scientists identify genetic variation linked to severity of ALS
A discovery made several years ago in a lab researching asthma at Wake Forest School of Medicine may now have implications for the treatment of amyotrophic lateral sclerosis (ALS), a disease with no known cure and only two FDA-approved drugs to treat its progression and severity.

Genetic variation contributes to individual differences in pleasure
Differences in how our brains respond when we're anticipating a financial reward are due, in part, to genetic differences, according to research with identical and fraternal twins published in Psychological Science, a journal of the Association for Psychological Science.

Read More: Genetic Variation News and Genetic Variation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.