Researchers solve a long-standing problem in organic chemistry

July 16, 2020

They occur in nature, are reactive and play a role in many biological processes: polyenes. It is no wonder that chemists have for a long time been interested in efficiently constructing these compounds - not least in order to be able to use them for future biomedical applications. However, such designs are currently neither simple nor inexpensive and present organic chemists with major challenges. Scientists at the University of Münster (Germany) headed by Prof. Ryan Gilmour have now found a bio-inspired solution to the problem: They succeeded in constructing complex polyenes such as retinoic acid from simple, geometrically well-defined alkene building blocks. To do this, the scientists used small molecules as "antennas" which they excited with light, thereby enabling difficult chemical reactions to proceed via a process known as "Energy Transfer Catalysis".

"The process provides us with a light-driven, operationally simple solution to a conundrum that has occupied us for a long time," says Dr. John J. Molloy, the first author of the study. The new possibility of forming complex polyenes could facilitate the exploration of these bioactive materials for drug discovery. The study has been published in the journal "Science".

Background and method:

The alkenes used by the scientists are structural units that can exist in two non-equivalent geometrical forms. These so-called stereoisomers - i.e. compounds in which the bonding pattern is the same but which differ in the spatial arrangement of the atoms - are a valuable source of chemical information in biology and are common structural features in larger complex molecules such as retinal, a vitamin A derivative. Although, alkene geometry plays a pivotal role in function, e.g. regulating the mammalian visual cycle, strategies to access geometrically defined alkene building blocks for iterative synthesis are conspicuously underdeveloped. Although many methods exist to access each isomer independently, they are often plagued by poor selectivity or require laborious independent synthesis campaigns.

Much as plants convert light to energy, the researchers harnessed small, inexpensive organic molecules under irradiation to "flip" common alkene building blocks into the more challenging form. This process is termed "energy transfer catalysis".

Since these materials are functionalised at both sites, they could be iteratively extended to construct complex bioactive polyenes such as retinoic acid, which may exist in multiple forms by virtue of alkene stereoisomerism. The Münster team demonstrated the power of their method in short, stereocontrolled syntheses of two retinoic acid-based drugs Isotretinoin and Alitretinoin.

The new method combines the importance of carbonyl chemistry in biosynthesis with the versatility of organoboron motifs in contemporary organic chemistry. "This article is dedicated to Prof. Duilio Arigoni, who recently passed away. He was a pioneer in bio-organic chemistry with whom I had the pleasure to work with in Zürich years ago and he often highlighted the urgency of this problem. This innovative solution is testimony to the hard work, innovation a dedication of a very talented group of highly motivated co-workers," says Ryan Gilmour.
Original publication:

J. J. Molloy & Michael Schäfer et al. (2020). Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science; DOI:10.1126/science.abb7235

University of Münster

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to