Scientists discover why cornea is transparent and free of blood vessels, allowing vision

July 17, 2006

Boston, MA -- Scientists at the Harvard Department of Ophthalmology's Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary (MEEI) are the first to learn why the cornea, the clear window of the eye, is free of blood vessels--a unique phenomenon that makes vision possible. The key, say the researchers, is the unexpected presence of large amounts of the protein VEGFR-3 (vascular endothelial growth factor receptor-3) on the top epithelial layer of normal healthy corneas. According to their findings, VEGFR-3 halts angiogenesis (blood vessel growth) by acting as a "sink" to bind or neutralize the growth factors sent by the body to stimulate the growth of blood vessels. The cornea has long been known to have the remarkable and unusual property of not having blood vessels, but the exact reasons for this had remained unknown.

These results, published in the July 25, 2006 issue of the Proceedings of the National Academy of Sciences and in the July 17 online edition, not only solve a profound scientific mystery, but also hold great promise for preventing and curing blinding eye disease and illnesses such as cancer, in which blood vessels grow abnormally and uncontrollably, since this phenomenon, present in the cornea normally, can be used therapeutically in other tissues.

"This is a very significant discovery," says Dr. Reza Dana, Senior Scientist at the Schepens Eye Research Institute, head of the Cornea Service at the Massachusetts Eye and Ear Infirmary, and an associate professor at Harvard Medical School, and the senior author and principal investigator of the study. "A clear cornea is essential for vision. Without the ability to maintain a blood-vessel-free cornea, our vision would be significantly impaired," he says, adding that clear, vessel-free corneas are vital to any animal that needs a high level of visual acuity to survive.

The cornea, one of only a few tissues in the body that actively keep themselves vessel-free (the other is cartilage), is the thin transparent tissue that covers the front of the eye. It is the clarity of the cornea that allows light to pass onto the retina and from there to the brain for interpretation. When the cornea is clouded by injury, infection or abnormal blood vessel growth, vision is severely impaired, if not destroyed.

Scientists have been wrestling with the "clarity" puzzle for many decades. And, while some previous studies have revealed small clues, none have pointed to one major mechanism, until this study.

In most other tissues of the body, blood vessel growth or angiogenesis occurs in response to a need for increased blood flow to heal an injured or infected area. The immune system sends in growth factors such as vascular endothelial growth factor (VEGF) to bind with a protein receptor called VEGFR-2 on blood vessels to trigger vessel growth. Three forms of VEGF--A, C, and D--bind with this receptor. Two of them, C and D also bind with VEGFR-3, which is usually found on cells lining lymphatic vessels, to stimulate the growth of lymphatic vessels.

Dana's team began to suspect the involvement of VEGFR-3 in stopping blood growth in corneas when they noticed unexpectedly that large amounts of the protein seemed to exist naturally on healthy corneal epithelium, a previously unknown location for the receptor. Dana and his team were already aware from clinical experience that the epithelium most likely played a role in suppressing blood vessel growth on the cornea, having witnessed blood vessels develop on corneas stripped of their epithelial layers.

They began to theorize that the large amounts of VEGFR-3, in this new, non-vascular location, might be attracting and sucking up all the C and D VEGF growth factors, thereby blocking them from binding with VEGFR-2. And, because this binding took place in a non-vascular setting, the growth factors were neutralized.

To test their theory, the team conducted a series of experiments.

Using corneal tissue from mice, the team did the following.

They conducted chemical analyses that demonstrated that VEFGR-3 and the gene that expressed it were indeed present on the corneal epithelium. Next, in two separate experiments, they compared corneas with and without epithelial layers that were injured. They found that only the corneas without epithelial layers developed blood vessels, implicating the role of the epithelium in suppressing blood vessel growth To further prove their theory, they added a VEGFR-3 substitute to corneas stripped of their epithelial layers and found that vessel growth continued to be suppressed, replacing the normal anti-angiogenic role of the epithelium. Finally they exposed intact corneas to an agent that blocked VEGFR-3 and found that blood vessels began to grow, formally demonstrating that the corneal epithelium is key to suppression of blood vessels and that the key mechanism is expression of VEGFR-3.

"The results from this series of tests, confirmed our belief that the presence of VEGFR-3 is the major factor in preventing blood vessel formation in the cornea," says Dana, who says that the discovery will have a far reaching impact on the development of new therapies for eye and other diseases.

"Drugs designed to manipulate the levels of this protein could heal corneas that have undergone severe trauma or help shrink tumors fed by rapidly growing abnormal blood vessels," he says. "In fact, the next step in our work is exactly this."
-end-
Other authors of the study include: Claus Cursiefen* +, Lu Chen*, Magali Saint-Geniez*, Pedram Hamrah*, Yiping Jin*, Saadia Rashid*, Bronislaw Pytowski**, Kris Persaud**, Yan Wu**, J. Wayne Streilein*†, Reza Dana* ++ ,

*The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Dept. of Ophthalmology, Harvard Medical School, Boston, MA; +Dept. of Ophthalmology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; **ImClone Systems, Inc., New York; †Dr. J. Wayne Streilein deceased March 15 th 2004.

About the Massachusetts Eye and Ear Infirmary,
http://www.meei.harvard.edu.: The Massachusetts Eye and Ear Infirmary, an independent specialty hospital, is an international center for treatment and research and a teaching hospital of Harvard Medical School.

Schepens Eye Research Institute is an affiliate of Harvard Medical School and he largest independent eye research institute in the world. For additional information, go to http://www.theschepens.org/.

Schepens Eye Research Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.