Compound discovered at sea shows potency against anthrax

July 17, 2013

A team led by William Fenical at Scripps Institution of Oceanography at UC San Diego has discovered a new chemical compound from an ocean microbe in a preliminary research finding that could one day set the stage for new treatments for anthrax and other ailments such as methicillin-resistant Staphylococcus aureus (MRSA).

As reported in the international edition of the German journal Angewandte Chemie, Scripps researcher Chris Kauffman in Fenical's group first collected the microorganism that produces the compound in 2012 from sediments close to shore off Santa Barbara, Calif. Fenical's team in the Scripps Center for Marine Biotechnology and Biomedicine, working in conjunction with San Diego-based Trius Therapeutics, used an analytical technique known as spectroscopy to decipher the unusual structure of a molecule from a microscopic species known as Streptomyces. Initial testing of the compound, which they named anthracimycin, revealed its potency as a killer of anthrax, the infectious disease often feared as a biological weapon, as well as MRSA.

"The real importance of this work is the fact that anthracimycin has a new and unique chemical structure," said Fenical, who added that the finding is a basic research discovery, which could lead to testing and development, and eventually a drug. "The discovery of truly new antibiotic compounds is quite rare. This discovery adds to many previous discoveries that show that marine bacteria are genetically and chemically unique."

The discovery provides the latest evidence that the oceans, and many of its unexplored regions, represent a vast resource for new materials that could one day treat a variety of diseases and illnesses. Fenical, a distinguished professor of oceanography and pharmaceutical science, helped found the field of marine biomedicine as a researcher at Scripps. He is a pioneer in discovering and identifying these novel compounds. His research has helped bring attention to the need for continued exploration of the ocean for science and society.
-end-
In addition to Fenical and Kauffman, coauthors of the paper include Kyoung Jang, Sang-Jip Nam, Deanna Beatty, and Lauren Paul of Scripps and Jeff Locke of Trius Therapeutics.

The National Institutes of Health and the Transformational Medical Technologies program of the Department of Defense Chemical and Biological Defense Program through the Defense Threat Reduction Agency supported the research.

University of California - San Diego

Related Marine Bacteria Articles from Brightsurf:

Switching up: Marine bacteria shift between lifestyles to get the best resources
Researchers from the University of Tsukuba and ETH Zurich have found that marine bacteria exploit resource patches efficiently by switching between attached and planktonic lifestyles, and fine-tuning the time spent on patches depending on their quality.

Marine heatwaves are human made
Heatwaves in the world's oceans have become over 20 times more frequent due to human influence.

Cashing in on marine byproducts
As exploitation of wild fisheries and marine environments threaten food supplies, Flinders University scientists are finding sustainable new ways to convert biowaste, algal biomass and even beached seaweed into valuable dietary proteins and other products.

Saving marine life: Novel method quantifies the effects of plastic on marine wildlife
Scientists at Tokyo Institute of Technology together with their international collaborators developed a novel quantitative method to quantify the effects of plastic on marine animals.

Marine microorganisms: How to survive below the seafloor
Foraminifera, an ancient and ecologically highly successful group of marine organisms, are found on and below the seafloor.

Marine energy devices likely pose minimal impacts to marine life, report shows
On World Oceans Day, an international team of marine scientists reports that the potential impact of marine renewable energy to marine life is likely small or undetectable.

Marine waste management: Recycling efficiency by marine microbes
It was only relatively recently that tiny, single-celled thaumarchaea were discovered to exist and thrive in the pelagic ocean, where their population size of roughly 1028 (10 billion quintillion) cells makes them one of the most abundant organisms on our planet.

Marine litter in the Bay of Biscay
The scientific journal 'Marine Pollution Bulletin' has just published 'Microplastics in the Bay of Biscay: an overview', a piece of work by the 'Materials+Technologies' research group (GMT) of the Faculty of Engineering - Gipuzkoa.

Neanderthals: Pioneers in the use of marine resources
An international team have just demonstrated that Neanderthals hunted, fished, and gathered prodigious volumes of seafood and other marine animals: they discovered remains of molluscs, crustaceans, fish, birds, and mammals in a Portuguese cave (Figueira Brava) occupied by Neanderthals between 106,000 and 86,000 BCE.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Read More: Marine Bacteria News and Marine Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.