Cancer drug tested in pet dogs is now bound for human trials

July 17, 2013

CHAMPAIGN, Ill. -- Thanks to a new $2 million investment, a drug that spurs cancer cells to self-destruct while sparing healthy cells is on the road to human clinical trials. The compound, known as PAC-1, has so far proven safe and has promising anti-cancer effects in cell culture, in mouse models of cancer and in pet dogs with spontaneously occurring lymphomas and osteosarcomas.

If PAC-1 (pack one) makes it through the U.S. Food and Drug Administration's Investigational New Drug review, the first human (Phase I) clinical trial of the drug will begin in mid-2014. The investor, who wishes to remain anonymous, has an option to invest another $2 million to take the drug into human trials. The clinical work will be conducted at the University of Illinois Cancer Center in Chicago.

"The trial is going to be geared toward brain cancer patients," said U. of I. chemistry professor Paul Hergenrother, who discovered PAC-1's anti-cancer capabilities in 2006 and has been refining and testing it ever since. "One of the unusual features of this drug is that it does get into the brain, which most cancer drugs do not. So we want to embrace that and try to address the unmet clinical need of brain cancer."

The researchers noted that the compound is still in the early stages of development, and must pass toxicological tests in two species as well as other pharmacology toxicity testing before it can be tried in human subjects.

The new investment is the outgrowth of years of testing and development of PAC-1 and derivative compounds in dogs with naturally occurring cancers, said Illinois professor of veterinary clinical medicineTim Fan, who coordinated clinical trials of the drug in canine patients at the U. of I. Veterinary Teaching Hospital.

"We know that mice will always be used as a traditional model for cancer research," Fan said. "But conventional preclinical models use mice with induced cancers, which fail to faithfully recapitulate the development of natural cancers. This means that novel therapeutics that may be effective in mice might fail in patients that develop cancer spontaneously, as observed in both dogs and people."

The researchers emphasized that the dogs used in the testing of PAC-1 were pets from the community with spontaneously occurring cancers, not laboratory animals with induced cancers.

"In addition to paving the way for the human trial, we have helped many veterinary patients that would not have otherwise received treatments for their cancer," Fan said.

PAC-1 targets a cellular enzyme, procaspase-3, that when activated spurs a series of reactions inside the cell that cause it to self-destruct, Hergenrother said. Procaspase-3 has long been an attractive target for cancer therapy, in part because cancers often interfere with normal cell death, and in part because many tumors -- including those of the breast, colon, liver and lung, along with lymphoma and melanoma -- contain high levels of procaspase-3.

"The target, procaspase-3 activation, and the extensive amount of in vitro and animal data that Dr. Hergenrother and Dr. Fan had generated are what attracted me to this project," said Ted Tarasow, the chief executive officer of Vanquish Oncology, a drug development startup company founded by Hergenrother and Tarasow in 2011.

"Procaspase-3 activation has long been recognized as a high potential target for oncology therapeutics, but largely has been met with frustration in terms of finding compounds that could actually influence its activity in vivo," Tarasow said. "And so the compounds that professor Hergenrother developed and that Vanquish is pursuing are likely to be the first procaspase-3-activating agents to make it to the clinic despite a lot of interest and investment in this target over the years."

Vanquish Oncology "has exclusively licensed the technology from the University of Illinois and is focused on moving PAC-1 into the clinic," Tarasow said. "As with any investigational agent, determining the true safety and efficacy profile of PAC-1 will take several years of human clinical trials."

PAC-1 has other desirable attributes, said Arkadiusz Dudek, a physician and professor of hematology and oncology at the U. of I. at Chicago.

"What is interesting about Hergenrother's discovery is that it has a unique ability to penetrate to brain tumors," said Dudek, who will design and supervise the first PAC-1 clinical trial in humans at the U. of I. Cancer Center. "This is an area of interest for us. If successful, it will make a huge impact on survival, quality of life and disease control in patients with primary or metastatic brain tumors."
-end-
This research has received support from the National Institutes of Health and from Illinois Ventures.

For more information about PAC-1, visit the Vanquish Oncology website. For more information on the canine clinical trials, visit the U. of I. Veterinary Teaching Hospital's clinical trials Web page.

Editor's note:

To reach Paul Hergenrother, call 217-333-0363; email hergenro@illinois.edu.

To reach Tim Fan, call 217-333-5375; email t-fan@illinois.edu.

A related paper "Discovery and Canine Preclinical Assessment of a Nontoxic Procaspase-3-Activating Compound," is available online.

University of Illinois at Urbana-Champaign

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.