Bees under threat from disease-carrying bumblebee imports, research reveals

July 17, 2013

Stricter controls over bumblebee imports to the UK are urgently required to prevent diseases spreading to native bumblebees and honeybees, scientists have warned. The call follows the discovery of parasites in over three-quarters of imported bumblebee colonies they tested. The study - the first of its kind in the UK - is published today in the Journal of Applied Ecology.

While wild species of bees and other insects pollinate many crops, commercially-reared and imported bumblebees are essential for pollination of greenhouse crops such as tomatoes. They are also used to enhance pollination of other food crops such as strawberries, and are now marketed for use in people's gardens. The trade is large and widespread: 40-50,000 commercially-produced bumblebee colonies - each containing up to 100 worker bees - are imported annually to the UK, and more than one million colonies are sold each year worldwide.

The team of researchers from the universities of Leeds, Stirling and Sussex bought 48 colonies of buff-tailed bumblebees (Bombus terrestris) from three European producers. Some colonies were a subspecies native to the UK and others were non-native. All were meant to be disease-free, but when they were tested using DNA technology, 77% of the colonies were found to be carrying parasites. Parasites were also found in the pollen food supplied with the bees.

Screening revealed that the imported bumblebee colonies carried a range of parasites including the three main bumblebee parasites (Crithidia bombi, Nosema bombi and Apicystis bombi), three honeybee parasites (Nosema apis, Ascosphaera apis and Paenibacillus larvae), and two parasites which infect both bumblebees and honeybees (Nosema ceranae and deformed wing virus).

After the screening tests, the team conducted a series of carefully controlled laboratory experiments to find out whether the parasites carried by the commercially-produced bumblebee colonies were viable and able to infect other bees.

Lead author of the study, Peter Graystock of the University of Leeds explains: "We found that commercially-produced bumblebee colonies contained a variety of microbial parasites, which were infectious and harmful not only to other bumblebees, but also to honeybees."

The results suggest current regulations and protocols governing bumblebee imports are not effective. Currently, Natural England licences are only required for the non-native subspecies. Although the licences require colonies to be disease free, colonies arriving in the UK are not screened to ensure compliance and the regulations do not apply to imports of the native subspecies.

The study argues that producers need to improve disease screening and develop a parasite-free diet for their bees, while regulatory authorities need to strengthen measures to prevent importation of parasite-carrying bumblebee colonies, including checking bees on arrival in the UK and extending regulations to cover imported colonies of the native subspecies.

As well as increasing the prevalence of parasites in wild bumblebees and managed honeybees near farms using the commercially-produced bumblebees, continuing to import bumblebee colonies that carry parasites is also likely to introduce new species or strains of parasites into some areas, the authors warn.

According to co-author of the study Professor William Hughes of the University of Sussex: "If we don't act, then the risk is that potentially tens of thousands of parasite-carrying bumblebee colonies may be imported into the UK each year, and hundreds of thousands worldwide. Many bee species are already showing significant population declines due to multiple factors. The introduction of more or new parasite infections will at a minimum exacerbate this, and could quite possibly directly drive declines."

Although this is the first study of its kind in the UK, research in North America, South America and Japan suggests that parasites introduced by commercial bumblebees may be a major cause of population declines of several bumblebee species, including Bombus dahlbomii in Argentina, and Bombus terricola and Bombus pensylvanicus in North America.
-end-
Peter Graystock et al (2013). 'The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies', doi: 10.1111/1365-2664.12134, is published in the Journal of Applied Ecology on 18 July 2013.

Wiley

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.