Brain changes responsible for the appetite effects of cannabis identified in animal studies

July 17, 2018

New research on how cannabis use alters eating behavior could lead to treatments for appetite loss in chronic illness, according to experts at Washington State University. Using a new procedure to dose lab rats with cannabis vapor, the researchers found how the drug triggers hunger hormones. They also identified specific brain regions that shift to 'hungry' mode while under the influence, according to a report they shared this week at the Society for the Study of Ingestive Behavior, an international meeting of scientific experts on eating.

"We all know cannabis use affects appetite, but until recently we've actually understood very little about how or why," explained Jon Davis, Ph.D., researcher in the Department of Integrative Physiology and Neurosciences at Washington State. "By studying exposure to cannabis plant matter, the most widely consumed form, we're finding genetic and physiological events in the body that allow cannabis to turn eating behavior on or off."

A recent wave of cannabis legalization for both medical and recreational purposes has stimulated research on its therapeutic potential. A family of compounds called cannabinoids, particularly delta-9 tetrahydrocannabinol (THC), are responsible for its psychological effects. The ability of THC to stimulate appetite is valuable since many illnesses cause extreme appetite loss which reduces quality of life and slows recovery.

For these new studies the scientists designed a vapor exposure system to mimic how people often consume cannabis. This allowed precise control of dosage while rats' meals were closely monitored throughout the day. Brief exposure to cannabis vapor stimulated a meal even when rats had recently eaten, suggesting that inhaling cannabis tricks appetite circuits in the brain into hunger mode.

"We found that cannabis exposure caused more frequent, small meals," stated Davis. "But there's a delay before it takes effect." That delay provided a clue to how the drug may act. Ordinarily, when the stomach is empty it releases a hormone called ghrelin, a message to the brain that it's time to look for food. The researchers found that the cannabis dose triggered a ghrelin surge. When they gave a second drug which prevented the ghrelin surge, cannabis no longer triggered eating. They also found changes in how the brain responds to the message. In small region of the hypothalamus responsible for sensing ghrelin, cannabis changed the genetic activity of brain cells that respond to the hormone.

The researchers are optimistic that deciphering that ways cannabis acts in the body to alter appetite can lead to new treatments for illness-induced anorexia. Severe appetite loss is a common symptom of many chronic illnesses, and is especially problematic in cancer, HIV/AIDS, heart disease, and some metabolic disorders. A targeted treatment that offers the beneficial effects on appetite without the broader effects on the mind and body could increase quality of life and speed recovery.
-end-
Research citation:

Investigating the Neuroendocrine and Behavioral Controls of Cannabis-Induced Feeding Behavior. JF Davis, PQ Choi, J Kunze, P Wahl, Washington State University Pullman, WA, USA. Presented July 2018, Society for the Study of Ingestive Behavior, Bonita Springs, FL.

Contact for more information:

Jon Davis, Ph.D. Assistant Professor, Integrative Psychology and Neurosciences
Washington State University, Pullman, WA
jon.davis@wsu.edu

Society for the Study of Ingestive Behavior

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.