Nav: Home

The ancient armor of fish -- scales -- provide clues to hair, feather development

July 17, 2018

When sea creatures first began crawling and slithering onto land about 385 million years ago, they carried with them their body armor: scales. Fossil evidence shows that the earliest land animals retained scales as a protective feature as they evolved to flourish on terra firma.

But as time passed, and species diversified, animals began to shed the heavy scales from their ocean heritage and replace them with fur, hair and feathers.

Today the molecular mechanisms of scale development in fish remain remarkably similar to the mechanisms that also produce feathers on birds, fur on dogs and hair on humans - suggesting a common evolutionary origin for countless vastly different skin appendages.

A new study, scheduled for online publication Tuesday in the journal eLife, examines the process as it occurs in a common laboratory genetics model, the zebrafish.

"We've found that the molecular pathways that underlie development of scales, hairs and feathers are strikingly similar," said the study's lead author, Andrew Aman, a postdoctoral researcher in biology at the University of Virginia.

Aman and his co-authors, including UVA undergraduate researcher Alexis Fulbright, now a Ph.D. candidate at the University of Utah, used molecular tools to manipulate and visualize scale development in zebrafish and tease out the details of how it works. It turns out, as the researchers suspected, skin appendages seen today originated hundreds of millions of years ago in primitive vertebrate ancestors, prior to the origin of limbs, jaws, teeth or even the internal skeleton.

While zebrafish have been studied for decades in wide-ranging genetic experiments, their scale development has mostly been overlooked, according to Aman.

"Zebrafish skin, including the bony scales, is largely transparent and researchers probably have simply looked past the scales to the internal structures," he said. "This is an area ripe for investigation, so we got the idea to look at the molecular machinery that drives the development of patterning in surface plating. We discovered profound similarities in the development of all skin appendages, whether scales, hair, fur or feathers."

Aman works in the lab of David Parichy, the study's senior author and the Pratt-Ivy Foundation Distinguished Professor of Morphogenesis in UVA's Department of Biology. Parichy's lab investigates developmental genetics of adult morphology, stem cell biology and evolution, using zebrafish and related species as models. A high percentage of the genes in these common aquarium fish are the same as in humans - reflecting a common ancestry going back to the earliest common vertebrates that populated the ancient seas.

Developmental patterning - such as how scales take shape and form in slightly overlapping layers (in the case of zebrafish, there are more than 200 round scales on each side of the fish) - is a critical part of all development, including how stem cells differentiate and become, for example, bone cells, skin cells and any of the hundreds of kinds of cells that comprise the 37 trillion or so cells in the human body.

How cells differentiate and organize into precise shapes (and sometimes develop into misshapen forms that can result in congenital diseases, cancers and other abnormalities) is of utmost interest to developmental biologists like Parichy and Aman. Understanding the process provides insights into birth defects, cancer and genetic disease, and how the process might be fixed when gone awry.

As an example, teeth, which are actually an epidermal appendage, sometimes are subject to developmental problems. "Defects we find in fish scale development are reminiscent of the developmental problems that can occur with teeth," Parichy said. "Since scales regenerate, maybe there is a way to get teeth to regenerate."

"This research helps us make important links between the natural history of life on Earth, the evolutionary process and human disease," Aman said.
-end-
In addition to the journal publication, Parichy will present the study Saturday at the annual meeting of the Society for Developmental Biology in Portland, Oregon.

University of Virginia

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.