Nav: Home

The depths of the ocean and gut flora unravel the mystery of microbial genes

July 17, 2018

Understanding the functions of genes in bacteria that form part of the human microbiome -the collection of microbes found inside our bodies- is important because these genes might explain mechanisms of bacterial infection or cohabitation in the host, antibiotic resistance, or the many effects-positive and negative- that the microbiome has on human health.

Surprisingly, the functions of a huge number of microbial genes are still unknown. This knowledge gap can be thought of as "genomic dark matter" in microbes, and neither computational biology nor current lab techniques have been able address this gap.

This challenge has now been tackled through an international collaboration between the Institute for Research in Biomedicine (IRB Barcelona) and two other interdisciplinary research centres, namely the IJS in Ljubljana (Slovenia) and RBI in Zagreb (Croatia). The findings have been published recently in Microbiome, the international journal of reference in microbiome research. The study was led by Fran Supek, computational biologist and leader of the Genome Data Science lab at IRB Barcelona, and first-authored by Vedrana Vidulin, a computer scientist affiliated to the centres in Slovenia and Croatia.

Intelligent prediction method

The researchers have developed a new computational method able to examine thousands of metagenomes simultaneously and identify the evolutionary signal that can predict the function of many microbial genes. This method, which analyses "big data" from human microbiomes (e.g. from the intestine or skin) and other metagenomes (e.g. from the soil or ocean) is based on a special kind of machine learning algorithm: it can create "decision trees" to predict hundreds of different functions at once, finding links between genes and at the same time predicting what they do in the microbial cell.

"This makes the algorithm very good at not getting confused by the noise in the metagenomic data, meaning that it is accurate and can confidently propose a biological role for a large number of genes with unknown functions. Intriguingly, it also proposes many additional functions for genes that already have some known role," says Supek.

The most important finding to emerge from this research is that the analysis of human microbiomes and other metagenomic data, such as those of the soil and ocean, allows researchers to assign hundreds of gene functions that have evaded current computational genomics approaches until now. "In other words, metagenomes allow scientists to see what ordinary genomes don't," explains the Croatian researcher, who was recently awarded a grant from the European Research Council (ERC).

Diversity is key

The scientists have found that different types of environments can predict different types of gene functions. For example, metagenomes from the ocean can be used to predict the genes used by bacteria for photosynthesis. But as the researchers point out, this could not have been discovered from the bacteria in the human gut. In contrast, the gut microbiome has been very useful for predicting key genes involved in the mechanisms underlying the development of disease and in the metabolism of alcohol and the biosynthesis of certain amino acids, predictions that would have been more difficult to make using microbiomes from the environment.

The authors conclude that, through machine learning, a large and diverse set of environments allows us to learn about many different gene functions in microbes. "Computational methods like this one are shedding light on the "dark matter" within microbial genomes -- the enormous number of genes in bacteria and in archaea whose functions are a mystery," says Supek.

The thousands of computational predictions generated will need to be validated in experiments. Once validated, they may lead to the discovery of new genes that explain how bacteria shape the ecosystems around us and indeed the ecosystem within -the human microbiome.
This study has been funded through the European FP7 "Future and Emerging Technologies" Programme and an ERC Starting Grant.

Reference article:

The evolutionary signal in metagenome phyletic profiles predicts many gene functions

Vedrana Vidulin, Tomislav Šmuc, Sašo Džeroski and Fran Supek

Microbiome (2018) 6:129 Doi:

About IRB Barcelona

Created in 2005 by the Generalitat de Catalunya (Government of Catalonia) and University of Barcelona, IRB Barcelona is a Severo Ochoa Centre of Excellence, a seal that was awarded in 2011. The institute is devoted to conducting research of excellence in biomedicine and to transferring results to clinical practice, thus improving people's quality of life, while simultaneously promoting the training of outstanding researchers, technology transfer, and public communication of science. Its 26 laboratories and seven core facilities address basic questions in biology and are orientated to diseases such as cancer, metastasis, Alzheimer's, diabetes, and rare conditions. IRB Barcelona is an international centre that hosts 400 employees and 32 nationalities. It is located in the Barcelona Science Park. IRB Barcelona forms part of the Barcelona Institute of Science and Technology (BIST) and the "Xarxa de Centres de Recerca de Catalunya" (CERCA). /@IRBBarcelona /

Institute for Research in Biomedicine (IRB Barcelona)

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".