Nav: Home

A dozen new moons of Jupiter discovered, including one 'oddball'

July 17, 2018

Washington, DC--Twelve new moons orbiting Jupiter have been found--11 "normal" outer moons, and one that they're calling an "oddball." This brings Jupiter's total number of known moons to a whopping 79--the most of any planet in our Solar System.

A team led by Carnegie's Scott S. Sheppard first spotted the moons in the spring of 2017 while they were looking for very distant Solar System objects as part of the hunt for a possible massive planet far beyond Pluto.

In 2014, this same team found the object with the most-distant known orbit in our Solar System and was the first to realize that an unknown massive planet at the fringes of our Solar System, far beyond Pluto, could explain the similarity of the orbits of several small extremely distant objects. This putative planet is now sometimes popularly called Planet X or Planet Nine. University of Hawaii's Dave Tholen and Northern Arizona University's Chad Trujillo are also part of the planet search team.

"Jupiter just happened to be in the sky near the search fields where we were looking for extremely distant Solar System objects, so we were serendipitously able to look for new moons around Jupiter while at the same time looking for planets at the fringes of our Solar System," said Sheppard.

Gareth Williams at the International Astronomical Union's Minor Planet Center used the team's observations to calculate orbits for the newly found moons.

"It takes several observations to confirm an object actually orbits around Jupiter," Williams said. "So, the whole process took a year."

Nine of the new moons are part of a distant outer swarm of moons that orbit it in the retrograde, or opposite direction of Jupiter's spin rotation. These distant retrograde moons are grouped into at least three distinct orbital groupings and are thought to be the remnants of three once-larger parent bodies that broke apart during collisions with asteroids, comets, or other moons. The newly discovered retrograde moons take about two years to orbit Jupiter.

Two of the new discoveries are part of a closer, inner group of moons that orbit in the prograde, or same direction as the planet's rotation. These inner prograde moons all have similar orbital distances and angles of inclinations around Jupiter and so are thought to also be fragments of a larger moon that was broken apart. These two newly discovered moons take a little less than a year to travel around Jupiter.

"Our other discovery is a real oddball and has an orbit like no other known Jovian moon," Sheppard explained. "It's also likely Jupiter's smallest known moon, being less than one kilometer in diameter".

This new "oddball" moon is more distant and more inclined than the prograde group of moons and takes about one and a half years to orbit Jupiter. So, unlike the closer-in prograde group of moons, this new oddball prograde moon has an orbit that crosses the outer retrograde moons.

As a result, head-on collisions are much more likely to occur between the "oddball" prograde and the retrograde moons, which are moving in opposite directions.

"This is an unstable situation," said Sheppard. "Head-on collisions would quickly break apart and grind the objects down to dust."

It's possible the various orbital moon groupings we see today were formed in the distant past through this exact mechanism.

The team think this small "oddball" prograde moon could be the last-remaining remnant of a once-larger prograde-orbiting moon that formed some of the retrograde moon groupings during past head-on collisions. The name Valetudo has been proposed for it, after the Roman god Jupiter's great-granddaughter, the goddess of health and hygiene.

Elucidating the complex influences that shaped a moon's orbital history can teach scientists about our Solar System's early years.

For example, the discovery that the smallest moons in Jupiter's various orbital groups are still abundant suggests the collisions that created them occurred after the era of planet formation, when the Sun was still surrounded by a rotating disk of gas and dust from which the planets were born.

Because of their sizes--one to three kilometers--these moons are more influenced by surrounding gas and dust. If these raw materials had still been present when Jupiter's first generation of moons collided to form its current clustered groupings of moons, the drag exerted by any remaining gas and dust on the smaller moons would have been sufficient to cause them to spiral inwards toward Jupiter. Their existence shows that they were likely formed after this gas and dust dissipated.

The initial discovery of most of the new moons were made on the Blanco 4-meter telescope at Cerro Tololo Inter-American in Chile and operated by the National Optical Astronomical Observatory of the United States. The telescope recently was upgraded with the Dark Energy Camera, making it a powerful tool for surveying the night sky for faint objects. Several telescopes were used to confirm the finds, including the 6.5-meter Magellan telescope at Carnegie's Las Campanas Observatory in Chile; the 4-meter Discovery Channel Telescope at Lowell Observatory Arizona (thanks to Audrey Thirouin, Nick Moskovitz and Maxime Devogele); the 8-meter Subaru Telescope and the Univserity of Hawaii 2.2 meter telescope (thanks to Dave Tholen and Dora Fohring at the University of Hawaii); and 8-meter Gemini Telescope in Hawaii (thanks to Director's Discretionary Time to recover Valetudo). Bob Jacobson and Marina Brozovic at NASA's Jet Propulsion Laboratory confirmed the calculated orbit of the unusual oddball moon in 2017 in order to double check its location prediction during the 2018 recovery observations in order to make sure the new interesting moon was not lost.
-end-
This research was partially funded by a NASA Planetary Astronomy grant and includes data gathered with the 6.5-meter Magellan Telescopes. This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaborating institutions. Observations were partly obtained at CTIO, NOAO, which are operated by the Association of Universities for Research in Astronomy, under contract with the NSF.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.