Nav: Home

Brain iron levels may predict multiple sclerosis disabilities

July 17, 2018

OAK BROOK, Ill. - A new, highly accurate MRI technique can monitor iron levels in the brains of multiple sclerosis (MS) patients and help identify those at a higher risk for developing physical disability, according to a study published in the journal Radiology.

MS is a disease that attacks three critical components of the central nervous system: the neurons (nerve fibers), myelin (the protective sheath around the neurons), and the cells that produce myelin. Common symptoms of MS include weakness, spasticity and pain. The disease can progress in many patients, leaving them severely disabled. Brain atrophy is the current gold standard for predicting cognitive and physical decline in MS, but it has limitations, said study lead author Robert Zivadinov, M.D., Ph.D., professor of neurology at the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo (UB) in Buffalo, N.Y. He is director of the Buffalo Neuroimaging Analysis Center in the Jacobs School and the Center for Biomedical Imaging at UB's Clinical and Translational Science Institute.

"Brain atrophy takes a long time to see," he said. "We need an earlier measure of who will develop MS-related disability."

MRI studies of iron concentration have emerged recently as a promising measure of changes in the brain associated with MS progression. Iron is vital for various cellular functions in the brain, including myelination of neurons, and both iron overload and iron deficiencies can be harmful.

"It is known that there is more iron in the deep gray matter structures in MS patients, but also we've seen in recent literature that there are regions where we find less iron in the brains of these patients," Dr. Zivadinov said.

Dr. Zivadinov and colleagues recently compared brain iron levels in people with MS to those of a healthy control group using an advanced MRI technique called quantitative susceptibility mapping. A brain region with more iron would have higher magnetic susceptibility, and one with less iron would have lower susceptibility.

The researchers performed the mapping technique on 600 MS patients, including 452 with early-stage disease and 148 whose disease had progressed.

Compared to 250 healthy control participants, MS patients had higher levels of iron in the basal ganglia, a group of structures deep in the brain that are central to movement. However, the MS patients had lower levels of iron in their thalamus, an important brain region that helps process sensory input by acting as a relay between certain brain structures and the spinal cord. The lower iron content in the thalamus and higher iron content in other deep gray matter structures of people with MS were associated with longer disease duration, higher disability degree and disease progression.

This association with clinical disability persisted even after adjusting for changes in the brain volumes of each individual structure.

"In this large cohort of MS patients and healthy controls, we have reported, for the first time, iron increasing in the basal ganglia but decreasing in thalamic structures," Dr. Zivadinov said. "Iron depletion or increase in several structures of the brain is an independent predictor of disability related to MS."

The results point to a potential role for quantitative susceptibility mapping in clinical trials of promising new drugs, Dr. Zivadinov said. Current treatments involving anti-inflammatory drugs do not prevent MS patients from developing disability.

"Susceptibility is an interesting imaging marker of disease severity that can predict which patients are at severe risk of progressing," Dr. Zivadinov said. "To be able to act against changes in susceptibility would be extremely beneficial."
-end-
"Brain Iron by Using Quantitative MRI Is Associated with Disability in Multiple Sclerosis." Collaborating with Dr. Zivadinov were Eleonora Tavazzi, M.D., Niels Bergsland, Ph.D., Jesper Hagemeier, Ph.D., Fuchun Lin, Ph.D., Michael G. Dwyer, Ph.D., Ellen Carl, Ph.D., Channa Kolb, M.D., David Hojnacki, M.D., Deepa Ramasamy, M.D., Jacqueline Durfee, B.S., Bianca Weinstock-Guttman, M.D., and Ferdinand Schweser, Ph.D.

Radiology is edited by David A. Bluemke, M.D., Ph.D., University of Wisconsin School of Medicine and Public Health, Madison, Wis., and owned and published by the Radiological Society of North America, Inc. (http://RSNA.org/radiology)

RSNA is an association of over 54,200 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on brain MRI, visit RadiologyInfo.org.

Radiological Society of North America

Related Multiple Sclerosis Articles:

AAN issues guideline on vaccines and multiple sclerosis
Can a person with multiple sclerosis (MS) get regular vaccines?
How to improve multiple sclerosis therapy
Medications currently used to treat multiple sclerosis (MS) can merely reduce relapses during the initial relapsing-remitting phase.
Vaccinations not a risk factor for multiple sclerosis
Data from over 12,000 multiple sclerosis (MS) patients formed the basis of a study by the Technical University of Munich (TUM) which investigated the population's vaccination behavior in relation to MS.
Obesity worsens disability in multiple sclerosis
Obesity is an aggravating factor in relapsing-remitting multiple sclerosis, the most common form of the disease.
A new culprit for multiple sclerosis relapses
A molecule that helps blood clot may also play a role in multiple sclerosis relapses, researchers report in the May 6, 2019 issue of PNAS.
Multiple sclerosis: Perilous ruptures
The permanent neurological deficits of multiple sclerosis patients largely depend on the extent of degeneration of long nerve fibers.
Multiple sclerosis -- Helping cells to help themselves
Diseases such as multiple sclerosis are characterized by damage to the 'myelin sheath', a protective covering wrapped around nerve cells akin to insulation around an electrical wire.
New clues to the origin and progression of multiple sclerosis
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease.
A new roadmap for repairing the damage of multiple sclerosis
Research published today in the journal Nature provides new understanding about how drugs can repair damaged brain cells that cause disability in patients with multiple sclerosis.
First clues to the causes of multiple sclerosis
There is still no cure for multiple sclerosis, with current treatments largely based on managing symptoms, especially accelerating recovery phases following a relapse and reducing the number and severity of relapses.
More Multiple Sclerosis News and Multiple Sclerosis Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.