Nav: Home

Gold nanoparticles to find applications in hydrogen economy

July 17, 2018

The international team of scientist of Peter the Great St. Petersburg Polytechnic University (SPbPU), Leibniz University Hannover (Leibniz Universität Hannover) and the Ioffe Institute found a way to improve nanocomposite material which opens a new opportunities to use it in hydrogen economy and other industries. The obtained results are explained in the academic article "The mechanism of charge carrier generation at the TiO2--n-Si heterojunction activated by gold nanoparticles" published in journal Semiconductor Science and Technology.

The study is dedicated to the composite material, a semiconductor based on titanium dioxide. Its applications are widely studied by the researchers all over the world. But the processes which take place in this material are very complex. Therefore, to use the semiconductor more effectively, it is necessary to ensure that the energy enclosed between its layers can be released and transmitted.

In framework of the experiments the researchers of SPbPU, Leibniz University Hannover and Ioffe Institute propose a qualitative model to explain the complex processes.

The scientific group used a composite material consisting of a silicon wafer (standard silicon wafer used in electronic devices), gold nanoparticles and a thin layer of titanium dioxide. In the framework of the experiment to transfer the energy inside the material, the researchers intended to isolate nanoparticles from silicon. If nanoparticles are not isolated from the silicon wafer, then the energy can't be transmitted neither to the silicon nor to the titanium dioxide. It leads to the energy loss.

"The obtained material was a silicon wafer with pillar-like structures grown on its surface. It was used as a substrate for the sample. Gold nanoparticles were situated on top of these pillars and the whole structure was coated with titanium oxide. Thus, nanoparticles contacted only titanium dioxide, and simultaneously were isolated from silicon. The number of boundaries between the layers decreased, we tried to describe the processes in the material. In addition, we assumed that this structure would increase the efficiency of using the energy of light illuminating the surface of our material", says Dr. Maxim Mishin, professor of Physics, Chemistry, and Technology of Microsystems Equipment Department of SPbPU.

In St. Petersburg, an international scientific group established a model of a new structure, then the main part of the structure was created in Hannover: a silicon wafer with pillars and gold nanoparticles situated on top of it.

The experiment was performed as follows. At first, the wafer was oxidized, i.e. it was covered with a layer of the substrate, and gold nanoparticles were put on top of it.

"After that, we faced the next task: to create pillars and to perform the etching of the substrate so that it is remained under the particles and not and in between them. Considering that we are dealing with nanosizes, the diameter of gold nanoparticles is about 10 nanometers, and the height of the pillar is 80 nanometers, this is not a trivial task. The development of modern nanoelectronics makes it possible to use the so-called "dry" etching methods such as reactive ion etching", adds Dr. Marc Christopher Wurz from the Institute of Micro Production Technology at Leibniz University Hannover.

According to scientists, the process of technology development had not been rapid: at the first stages of the experiment, while using the ion etching, all gold nanoparticles were simply demolished from the oxidized wafer. In the course of one week, the researchers were selecting the parameters for etching plasma system, so that the gold nanoparticles remained on the surface. The whole experiment was conducted within 10 days.

This scientific project is ongoing. The researchers mention that this nanocomposite material can be used in optical devices operating in the visible light spectrum. In addition, it can be used as a catalyst to produce hydrogen from water, or, for example, to purify water by stimulating the decomposition of complex molecules. In addition, this material may be useful as an element of a sensor which detects a gas leak or increased concentration of harmful substances in the air.
-end-
The project was supported by the DAAD program "Strategic Partnership of Peter the Great St. Petersburg Polytechnic University and Leibniz University Hannover".

Peter the Great Saint-Petersburg Polytechnic University

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.