Nav: Home

Gold nanoparticles to find applications in hydrogen economy

July 17, 2018

The international team of scientist of Peter the Great St. Petersburg Polytechnic University (SPbPU), Leibniz University Hannover (Leibniz Universität Hannover) and the Ioffe Institute found a way to improve nanocomposite material which opens a new opportunities to use it in hydrogen economy and other industries. The obtained results are explained in the academic article "The mechanism of charge carrier generation at the TiO2--n-Si heterojunction activated by gold nanoparticles" published in journal Semiconductor Science and Technology.

The study is dedicated to the composite material, a semiconductor based on titanium dioxide. Its applications are widely studied by the researchers all over the world. But the processes which take place in this material are very complex. Therefore, to use the semiconductor more effectively, it is necessary to ensure that the energy enclosed between its layers can be released and transmitted.

In framework of the experiments the researchers of SPbPU, Leibniz University Hannover and Ioffe Institute propose a qualitative model to explain the complex processes.

The scientific group used a composite material consisting of a silicon wafer (standard silicon wafer used in electronic devices), gold nanoparticles and a thin layer of titanium dioxide. In the framework of the experiment to transfer the energy inside the material, the researchers intended to isolate nanoparticles from silicon. If nanoparticles are not isolated from the silicon wafer, then the energy can't be transmitted neither to the silicon nor to the titanium dioxide. It leads to the energy loss.

"The obtained material was a silicon wafer with pillar-like structures grown on its surface. It was used as a substrate for the sample. Gold nanoparticles were situated on top of these pillars and the whole structure was coated with titanium oxide. Thus, nanoparticles contacted only titanium dioxide, and simultaneously were isolated from silicon. The number of boundaries between the layers decreased, we tried to describe the processes in the material. In addition, we assumed that this structure would increase the efficiency of using the energy of light illuminating the surface of our material", says Dr. Maxim Mishin, professor of Physics, Chemistry, and Technology of Microsystems Equipment Department of SPbPU.

In St. Petersburg, an international scientific group established a model of a new structure, then the main part of the structure was created in Hannover: a silicon wafer with pillars and gold nanoparticles situated on top of it.

The experiment was performed as follows. At first, the wafer was oxidized, i.e. it was covered with a layer of the substrate, and gold nanoparticles were put on top of it.

"After that, we faced the next task: to create pillars and to perform the etching of the substrate so that it is remained under the particles and not and in between them. Considering that we are dealing with nanosizes, the diameter of gold nanoparticles is about 10 nanometers, and the height of the pillar is 80 nanometers, this is not a trivial task. The development of modern nanoelectronics makes it possible to use the so-called "dry" etching methods such as reactive ion etching", adds Dr. Marc Christopher Wurz from the Institute of Micro Production Technology at Leibniz University Hannover.

According to scientists, the process of technology development had not been rapid: at the first stages of the experiment, while using the ion etching, all gold nanoparticles were simply demolished from the oxidized wafer. In the course of one week, the researchers were selecting the parameters for etching plasma system, so that the gold nanoparticles remained on the surface. The whole experiment was conducted within 10 days.

This scientific project is ongoing. The researchers mention that this nanocomposite material can be used in optical devices operating in the visible light spectrum. In addition, it can be used as a catalyst to produce hydrogen from water, or, for example, to purify water by stimulating the decomposition of complex molecules. In addition, this material may be useful as an element of a sensor which detects a gas leak or increased concentration of harmful substances in the air.
-end-
The project was supported by the DAAD program "Strategic Partnership of Peter the Great St. Petersburg Polytechnic University and Leibniz University Hannover".

Peter the Great Saint-Petersburg Polytechnic University

Related Nanoparticles Articles:

Study models new method to accelerate nanoparticles
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Nanoparticles take a fantastic, magnetic voyage
MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site.
Quantum optical cooling of nanoparticles
One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature.
Nanoparticles help realize 'spintronic' devices
For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices.
Directed evolution builds nanoparticles
Directed evolution is a powerful technique for engineering proteins. EPFL scientists now show that it can also be used to engineer synthetic nanoparticles as optical biosensors, which are used widely in biology, drug development, and even medical diagnostics such as real-time monitoring of glucose.
What happens to magnetic nanoparticles once in cells?
Although magnetic nanoparticles are being used more and more in cell imaging and tissue bioengineering, what happens to them within stem cells in the long term remained undocumented.
Watching nanoparticles
Stanford researchers retooled an electron microscope to work with visible light and gas flow, making it possible to watch a photochemical reaction as it swept across a nanoparticle the size of a single cold virus.
Nanoparticles to treat snakebites
Venomous snakebites affect 2.5 million people, and annually cause more than 100,000 deaths and leave 400,000 individuals with permanent physical and psychological trauma each year.
Nanoparticles in our environment may have more harmful effects than we think
Researchers warn that a combination of nanoparticles and contaminants may form a cocktail that is harmful to our cells.
More Nanoparticles News and Nanoparticles Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.