Nav: Home

Exploding waves from colliding dissipative pulses

July 17, 2018

WASHINGTON, D.C., July 17, 2018 -- The interaction of traveling waves in dissipative systems, physical systems driven by energy dissipation, can yield unexpected and sometimes chaotic results. These waves, known as dissipative pulses (DSs), are driving experimental studies in a variety of areas that involve matter and energy flows.

In the journal Chaos, from AIP Publishing, researchers studied collisions between three types of DSs to determine what happens when these traveling waves interact. "We intended to find out whether one could get spatially localized chaotic behavior by colliding pulses that are regular in space and time," said Orazio Descalzi, an author on the paper.

Descalzi and colleague Helmut Brand used two coupled cubic-quintic complex Ginzburg-Landian equations (CQCGLEs) to model collisions of stationary and oscillating DSs at different speeds. CQCGLEs are mathematical equations that other researchers have used for nearly three decades to study DSs, and they can be derived from reaction diffusion or hydrodynamic equations. "It is the simplest possible model for such phenomena," Descalzi said.

DSs have been observed in binary fluid convection in cars, optical systems like high-powered lasers and biological phenomena like cell movement. "Recently, the importance of localized dissipative structures for corrosion surfaces in electrochemistry has been demonstrated," Descalzi said.

Colliding pulses can interact in several ways, depending on factors like the pulse propagation speed. At lower speeds, pulses either interpenetrate or form bound states, Descalzi explained. At higher velocities, colliding DSs undergo partial annihilation or, under certain conditions, explode. "Explosions are irregular periods of rapid growth that are followed by sudden collapse to the initial profile," Descalzi said.

In their study, the researchers observed 10 different types of DS interactions including interpenetration, stationary bound states, oscillating bound states, and exploding DSs. The researchers were surprised to observe exploding DSs because the types of pulses colliding were not the type that typically explode. "We observed that regular pulses were transformed into explosive pulses," Descalzi said. Another unexpected result was the creation of an oscillating bound state with two frequencies from two DSs with one frequency colliding.

These results address the transition from regular DSs to localized chaotic behavior during collision, and report on previously undescribed complex behavior. The study's findings also point to possible future research avenues. Outside of nonlinear optics, where exploding DSs have been observed, studies have been limited to stationary DSs. The authors note that systems from nonlinear optics studies could be modified to experimentally study collisions of various DSs to test the predictions in their study.
The article, "Collisions of non-explosive dissipative solitons can induce explosions," is authored by Orazio Descalzi and Helmut Brand. The article will appear in Chaos July 17, 2018 (DOI: 10.1063/ 1.5023294). After that date, it can be accessed at


Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See

American Institute of Physics

Related Behavior Articles:

Religious devotion as predictor of behavior
'Religious Devotion and Extrinsic Religiosity Affect In-group Altruism and Out-group Hostility Oppositely in Rural Jamaica,' suggests that a sincere belief in God -- religious devotion -- is unrelated to feelings of prejudice.
Brain stimulation influences honest behavior
Researchers at the University of Zurich have identified the brain mechanism that governs decisions between honesty and self-interest.
Brain pattern flexibility and behavior
The scientists analyzed an extensive data set of brain region connectivity from the NIH-funded Human Connectome Project (HCP) which is mapping neural connections in the brain and makes its data publicly available.
Butterflies: Agonistic display or courtship behavior?
A study shows that contests of butterflies occur only as erroneous courtships between sexually active males that are unable to distinguish the sex of the other butterflies.
Sedentary behavior associated with diabetic retinopathy
In a study published online by JAMA Ophthalmology, Paul D.
Curiosity has the power to change behavior for the better
Curiosity could be an effective tool to entice people into making smarter and sometimes healthier decisions, according to research presented at the annual convention of the American Psychological Association.
Campgrounds alter jay behavior
Anyone who's gone camping has seen birds foraging for picnic crumbs, and according to new research in The Condor: Ornithological Applications, the availability of food in campgrounds significantly alters jays' behavior and may even change how they interact with other bird species.
A new tool for forecasting the behavior of the microbiome
A team of investigators from Brigham and Women's Hospital and the University of Massachusetts have developed a suite of computer algorithms that can accurately predict the behavior of the microbiome -- the vast collection of microbes living on and inside the human body.
Is risk-taking behavior contagious?
Why do we sometimes decide to take risks and other times choose to play it safe?
Neural connectivity dictates altruistic behavior
A new study suggests that the specific alignment of neural networks in the brain dictates whether a person's altruism was motivated by selfish or altruistic behavior.

Related Behavior Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".