Nav: Home

New cost-effective instrument measures molecular dynamics on a picosecond timescale

July 17, 2018

WASHINGTON, D.C., July 17, 2018 -- Studying the photochemistry, or chemical results of light, has shown that ultraviolet radiation can set off harmful chemical reactions in the human body and, alternatively, can provide "photo-protection" by dispersing extra energy. To better understand the dynamics of these photochemical processes, a group of scientists irradiated the RNA base uracil with ultraviolet light and documented its behavior on a picosecond timescale.

This week in the Journal of Chemical Physics, from AIP Publishing, the authors describe their work using a new instrument that combines a thermal desorption source with "ultrafast" femtosecond pulses and mass spectrometry detection. The experiment involved exciting uracil molecules and then ionizing them, using a pump-probe technique that shows the molecules' excitation and relaxation response.

"Ultimately, can we tune the dynamics in molecules such that we can maybe drive things toward a preferred photochemical outcome?" said Dave Townsend, an author on the paper. "Some motions are going to be active in driving the dynamics and helping with energy dissipation. Others will just be passive. If you can learn more about that [molecular dynamics], you can start to understand and develop a set of rules for molecular behavior."

Uracil is one of the essential building blocks of RNA. Understanding its energy-dissipating abilities affords insights into mechanistic principles that could one day inform better medicines and optimize photo-dynamic therapies.

"We've shown that you can get good results from a system combining mass spectrometry and thermal desorption, and that, importantly, this enables you to expand the range of molecules to which you can apply cutting-edge spectroscopic methods -- bigger, heavier and very nonvolatile systems that are not easy to put into a gas phase," Townsend said.

The researchers also looked for a uracil fragment that is theoretically predicted to be associated with a ring-opening mechanism. The fragment was not revealed during the short time of their investigation, indicating that it might form on longer timescales. Comparing their results with the existing body of work on uracil provided useful benchmarking for their new instrument and showed that thermal desorption can produce results similar to more conventional molecular beam methods.

"We've got a nice demonstration of using this thermal desorption source, and we've shown that for relatively minimal expense, you can set this up and do these kinds of interesting experiments," Townsend said.
-end-
The article, "Ultraviolet relaxation dynamics in uracil: Time-resolved photoion yield studies using a laser-based thermal desorption source," is authored by Omair Ghafur, Stuart W. Crane, Michal Ryszka, Jana Bockova, Andre Rebelo, Lisa Saalbach, Simone De Camillis, Jason B. Greenwood, Samuel Eden and Dave Townsend. The article will appear in the Journal of Chemical Physics July 17, 2018 (DOI: 10.1063/1.5034419). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5034419.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

American Institute of Physics

Related Rna Articles:

How RNA formed at the origins of life
A single process for how a group of molecules called nucleotides were made on the early Earth, before life began, has been suggested by a UCL-led team of researchers.
RNA and longevity: Discovering the mechanisms behind aging
Korean researchers suggests that NMD-mediated RNA quality control is critical for longevity in the roundworm called C. elegans, a popularly used animal for aging research.
Don't kill the messenger RNA
Success of new protein-making therapy for hemophilia opens door for treating many other diseases.
RNA modification important for brain function
Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg University Mainz (JGU) have shown that a new way of regulating genes is vital for the activity of the nervous system.
Atlas of the RNA universe takes shape
In the last few years, small snippets of RNA, which may have played a key role in the planet's earliest flickering of life, have been uncovered and examined in great detail.
Punching cancer with RNA knuckles
Researchers achieved an unexpected eye-popping reduction of ovarian cancer during successful tests of targeted nanohydrogel delivery in vivo in mice.
Gatekeeping proteins to aberrant RNA: You shall not pass
Berkeley Lab researchers found that aberrant strands of genetic code have telltale signs that enable gateway proteins to recognize and block them from exiting the nucleus.
Short RNA molecules mapped in single cell
Researchers at Karolinska Institutet have measured the absolute numbers of short, non-coding, RNA sequences in individual embryonic stem cells.
Watching RNA fold
New technology takes a nucleotide-resolution snapshot of RNA as it is folding, which could lead to discoveries in biology, gene expression, and disease.
Bacteria: Third RNA binding protein identified
Pathogenic bacteria use small RNA molecules to adapt to their environment.

Related Rna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...