Nav: Home

Researchers enable transmission of specific colors of light over long distances

July 17, 2018

Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. They explored a new way to select and send light of a specific color using long silicon wires that are several hundred nanometers in diameter (about 1,000 times smaller than a human hair) and their work enabled a new type of nanoscale "light switch" that can turn on and off the transmission of one color of light over very long distances.

The research paper, written by chemistry professor James Cahoon and graduate student Seokhyoung Kim at the University of North Carolina at Chapel Hill, along with collaborators at Korea University, was published in the journal Nature Communications on July 17.

Optical computing technology promises many benefits. Swapping electrons for light-based technology would mean that the computers of the future won't overheat and will run much faster.

"In the past there hasn't been a controlled method for selectively sending light down nanoscale wires, so optical technology has either used much larger structures or wasted a lot of light in the process," said James Cahoon, senior corresponding author and associate professor of chemistry in the College of Arts and Sciences at UNC-Chapel Hill. "We found a way to turn on and off the transmission of a specific color of light, and it represents an important step towards the more controlled, effective use of light that would enable optical computing."

The research team developed the Encoded Nanowire Growth and Appearance through VLS and Etching (ENGRAVE) technique, which can create complex shapes in nanowires. They then achieved selective light transmission through precise diameter modulation with the ENGRAVE technique. This was the first report of direct use of a Mie resonance, a light scattering property of nanowires, for guiding light in a nanowire.

This work is a step forward for optical computing and will help enable further advances in the technology. The team's findings can enable downsizing of the optical components needed to develop computers based on light instead of on electricity. By miniaturizing these components, they can be more easily integrated with the existing electronic components in computers. Additionally, the color of light conducted by the wires in this study is sensitive, with the color changing as the environment changes. Thus, these structures can be used as a new type of sensor, in which the color of the conducted light senses the environment of the wire.
-end-
About the University of North Carolina at Chapel Hill

The University of North Carolina at Chapel Hill, the nation's first public university, is a global higher education leader known for innovative teaching, research and public service. A member of the prestigious Association of American Universities, Carolina regularly ranks as the best value for academic quality in U.S. public higher education. Now in its third century, the University offers 77 bachelor's, 111 master's, 65 doctorate and seven professional degree programs through 14 schools and the College of Arts and Sciences. Every day, faculty, staff and students shape their teaching, research and public service to meet North Carolina's most pressing needs in every region and all 100 counties. Carolina's more than 323,000 alumni live in all 50 states, the District of Columbia and 149 countries. More than 169,000 live in North Carolina.

University of North Carolina at Chapel Hill

Related Nanoscale Articles:

House cleaning on the nanoscale
A team of scientists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) has developed a novel mechanical cleaning method for surfaces on the nanoscale.
As electronics shrink to nanoscale, will they still be good as gold?
As circuit interconnects shrink to nanoscale, will the pressure caused by thermal expansion when current flows through wires cause gold to behave more like a liquid than a solid -- making nanoelectronics unreliable?
A joint venture at the nanoscale
Scientists at Argonne National Laboratory report fabricating and testing a superconducting nanowire device applicable to high-speed photon counting.
Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.
Creating a nanoscale on-off switch for heat
Researchers create a polymer thermal regulator that can quickly transform from a conductor to an insulator, and back again.
Magnetic tuning at the nanoscale
Physicists from the German research center Helmholtz-Zentrum Dresden-Rossendorf (HZDR) are working to produce engineered magnetic nanostructures and to tailor material properties at the nanoscale.
Scientists can now control thermal profiles at the nanoscale
Scientists have designed and tested an experimental system that uses a near-infrared laser to actively heat two gold nanorod antennae to different temperatures.
New study shows nanoscale pendulum coupling
In 1665, Lord Christiaan Huygens found that two pendulum clocks, hung in the same wooden structure, oscillated spontaneously and perfectly in line but in opposite directions: the clocks oscillated in anti-phase.
Research reveals liquid gold on the nanoscale
Swansea University researchers have discovered what liquid gold looks like on the nanoscale - and in doing so have mapped the way in which nanoparticles melt, which is relevant to the manufacturing and performance of nanotech devices such as bio-sensors, nanochips , gas sensors, and catalysts.
Nanoscale thermometers from diamond sparkles
The development of a novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale will have immediate applications for both industry and fundamental scientific research, scientists say.
More Nanoscale News and Nanoscale Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.