Nav: Home

Solutions to water challenges reside at the interface

July 17, 2018

WASHINGTON, D.C., July 17, 2018 -- In response to rising water scarcity, leading Argonne National Laboratory researcher Seth Darling describes the most advanced research innovations that could address global clean water accessibility. His comprehensive paper focuses on understanding and controlling the interfaces between materials and water.

Interfaces determine the performance of technologies like water quality sensors, filtration membranes and even pipes. Darling's own labs are working on adsorbents to advance water treatment. He presented his findings this week in the Journal of Applied Physics, from AIP Publishing.

Adsorbents

Adsorption is one of the best mechanisms for cleaning water. In this process, contaminants adhere to the surface of porous materials to maximize surface-to-volume ratio.

Highly porous activated carbon is the most extensively used because it is abundant and inexpensive. Zeolites can trap whole molecules in their 3D crystalline cage structures, enabling them to selectively bind particular compounds from water-based solutions. Polymer-based sorbents have nearly limitless flexibility in their design.

"We will continue to rely [on] these proven technologies," Darling said. "But there is also a pressing need for sorbents that are more effective and energy-efficient."

Reusability

Reusability is a critical metric for sorbent materials, which can markedly reduce costs and increase the sustainability of a treatment process. Polymeric foam sponges are promising candidates for this approach.

Darling is heading a group that created the Oleo Sponge, which can soak up 90 times its weight in oil throughout the entire water column. To create the Oleo Sponge, the researchers implemented a technique called sequential infiltration synthesis (SIS). Using SIS, they grew metal oxide within the foam fibers to transform common polyurethane foam, found in seat cushions, into an oil adsorbent.

The oxide serves as the "glue" to which the oil-loving (oleophilic) molecules attach. Reusable oil is extracted from the sponge, so it can be used repeatedly.

Targeting Individual Pollutants

Researchers are also designing next-generation sorbents that have higher specificity --more binding power to target individual pollutants. Ideally, researchers could tailor interfacial properties to adsorb specific molecules to capture challenging water contaminants like nutrients and heavy metals.

Researchers are now investigating how to repurpose metal-organic frameworks (MOFs), a material already used in gas sorption, for this purpose. Related to zeolites, MOFs consist of metal ions or clusters bound by organic ligands. MOFs have a high surface area, controllable structures and tunable pores.

"We have a water crisis, which is based on increasing population, urbanization and climate disruption. And there's unsustainable use of our water," Darling said. "Part of addressing this is through policy solutions, but we also need new, more energy-efficient and cost-effective technologies."
-end-
The article, "Perspective: Interfacial materials at the interface of energy and water," is authored by Seth Darling. The article appeared in the Journal of Applied Physics July 17, 2018 (DOI: 10.1063/1.5040110) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5040110.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See http://jap.aip.org.

American Institute of Physics

Related Molecules Articles:

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.