Nav: Home

Nitric oxide tells roundworms to avoid bad bacteria

July 17, 2018

Nitric oxide gas produced by a type of harmful bacteria lets roundworms know to stay away from it, says a new study published in eLife.

The findings reveal a set of proteins needed for the roundworm Caenorhabditis elegans (C. elegans) to avoid the pathogenic bacteria Pseudomonas aeruginosa (PA14) - a microorganism that produces and releases nitric oxide. In particular, the study shows that a protein called thioredoxin determines the time course of the worms' sensory response to the gas.

"Nitric oxide is found in the air, produced by lightning and heat and released by some animals. In many organisms, it regulates important physiological events such as dilating blood vessels or signalling between neurons," explains co-first author Yingsong Hao, Research Scientist in the Department of Molecular Biology, Massachusetts General Hospital, US. "But until now, it wasn't known whether animals detect the gas in their environment as a sensory cue and generate behavioural responses to it."

C. elegans interacts with various microbes in its natural habitat, including PA14 which infects the worm. Hao, together with co-first author Wenxing Yang, a postdoctoral scholar in the Department of Organismic and Evolutionary Biology, Center for Brain Science at Harvard University, US, and their team studied the interactions between both organisms to see if the gas released by the bacteria acted as a sensory cue for the worms to avoid it. "Our initial results showed that C. elegans stays away from a lawn of PA14 after feeding on it for a few hours," Hao says. "This avoidance is significantly reduced for a mutant strain of PA14 that does not produce nitric oxide."

The team then combined their behavioural analysis with a calcium imaging approach in different genetic mutations of C. elegans. They saw that the worms respond to the gas using a pair of chemosensory neurons (ASJ). Further studies revealed that thioredoxin, a protein involved in reducing internal oxidative and nitric oxide stress, regulates the temporal dynamics of a worm's response to the gas.

"It is important to know how harmful bacteria is detected and evaded by different organisms. In this case, we have shown how worms use bacterially produced nitric oxide as a sensory cue for avoiding infection by bacterial pathogens," says co-senior author Joshua Kaplan, Principal Investigator and Professor of Neurobiology at Harvard Medical School. "Interestingly, the worms have repurposed a protein, which is originally used to regulate internal nitric oxide activity, to detect environmental pathogens."

Co-senior author Yun Zhang, Principal Investigator and Professor at the Department of Organismic and Evolutionary Biology at Harvard University, adds: "Since thioredoxins are produced by many animals, our findings provide testable hypotheses in studies of how other organisms might detect and avoid nitric oxide. But as a next step, we would like to identify the sensor that allows C. elegans to detect this gas in the environment."
-end-
Reference

The paper 'Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide' can be freely accessed online at https://doi.org/10.7554/eLife.36833. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

eLife

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".