Nav: Home

Getting to a 75 percent sugar reduction: How researchers discovered sweet spot for Stevia

July 17, 2018

JULY 17, 2018 (Brussels, Belgium) -- A team of 27 scientists working with a major stevia supplier has created a systematic way to spot blends of steviol glycosides with outstanding taste performance. With data from a huge sensory study they built a mathematical model of the interactions between key glycosides. The model reveals the glycoside mixes that taste the best - and those that don't.

"This approach systematically pinpoints stevia blends that deliver superior taste, allowing for unprecedented levels of sugar reduction while keeping taste quality, an important attribute today with the U.S. Department of Agriculture's (USDA) Dietary Guidelines calling for significant cuts in daily sugar intake," said Dr. John Fry, an internationally acknowledged expert on high potency sweeteners.

Extensive sensory studies

Around 100 trained panellists labored over more than two years to characterize each of the most abundant glycosides in stevia leaf. Difference, descriptive, threshold and quantitative panels all played a part. As well as concentration-response relationships for sweetness, for the first time curves for bitterness and liquorice were produced (the latter two being attributes that had negatively impacted earlier stevia sweeteners). The panels went on to look at taste interactions in two-, three- and four-component mixtures.

Sophisticated modelling techniques simplified the enormous compilation of data, allowing the taste of all possible combinations of certain glycosides to be displayed as color-coded pictures. These "maps" highlighted where sweetness was enhanced or undesirable side tastes reduced. Additional "contour plots" revealed glycoside blends that should interact positively. The "finding the sweet spot" chart (see links to access below) shows three such plots, one each for sweetness, bitterness and liquorice, overlaid on each other. The easily-seen highlighted area predicts the glycoside compositions with maximum sweetness intensity and minimum side tastes.

"The beauty of this technique is that the best candidate blends jump out at you, where it could take years of trial-and-error work to stumble on them by accident," said Dr Fry.

Synergistic blends performed better than pure glycosides

The predicted blends were then created from pure glycosides and re-tested to confirm their outstanding performance in foods and beverages. One of the most important results of this research was that synergistic blends kept taste quality while allowing a 75 percent reduction in sugar. This compares with around 50 percent that was the maximum achievable with pure Reb A in typical carbonated beverages.

Alternative approach concurs

Elsewhere, other researchers found that the optimized blend of glycosides identified by a design of experiment platform outperformed Reb A, with the deep sugar reduced chocolate milk and no sugar added yogurt performing best with the optimized blends. These blend solutions both showed a significant improvement in taste compared to the single glycoside, Reb A.
-end-
For more about the study and for access to available data and charts, visit the International Stevia Council or the Calorie Control Council.

SOURCE: International Stevia Council

Kellen Communications - NY

Related Mathematical Model Articles:

A mathematical model reveals long-distance cell communication mechanism
An interdisciplinary collaborative team at KAIST has identified how a large community can communicate with each other almost simultaneously even with very short distance signaling.
Experimentally validated model for drug discovery gets a stamp of mathematical approval
Insilico Medicine, a biotechnology company developing an end-to-end drug discovery pipeline utilizing next-generation artificial intelligence, is proud to present its paper 'A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models' at the 33rd Conference on Neural Information Processing Systems (NeurIPS).
A new mathematical approach to understanding zeolites
A system developed at MIT helps to identify zeolites that can readily transform into other zeolite forms, which are widely used as catalysts in industrial processes.
Mathematical model could help correct bias in measuring bacterial communities
A mathematical model shows how bias distorts results when measuring bacterial communities through metagenomic sequencing.
Mathematical model provides new support for environmental taxes
A new mathematical model provides support for environmental taxation, such as carbon taxes, as an effective strategy to promote environmentally friendly practices without slowing economic growth.
New mathematical model can improve radiation therapy of brain tumours
Researchers have developed a new model to optimize radiation therapy and significantly increase the number of tumor cells killed during treatment.
AI used to test evolution's oldest mathematical model
Researchers have used artificial intelligence to make new discoveries, and confirm old ones, about one of nature's best-known mimics, opening up whole new directions of research in evolutionary biology.
Mathematical model explores daily rhythms in pain sensitivity
A new computational model successfully predicts how daily pain sensitivity rhythms affect pain processing, both in healthy adults and in people with neuropathic pain.
Mathematical tools to study tumors
The results obtained suggest that vitronectin can change the rigidity of the location of the tumorous cells.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
More Mathematical Model News and Mathematical Model Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.