Nav: Home

Getting to a 75 percent sugar reduction: How researchers discovered sweet spot for Stevia

July 17, 2018

JULY 17, 2018 (Brussels, Belgium) -- A team of 27 scientists working with a major stevia supplier has created a systematic way to spot blends of steviol glycosides with outstanding taste performance. With data from a huge sensory study they built a mathematical model of the interactions between key glycosides. The model reveals the glycoside mixes that taste the best - and those that don't.

"This approach systematically pinpoints stevia blends that deliver superior taste, allowing for unprecedented levels of sugar reduction while keeping taste quality, an important attribute today with the U.S. Department of Agriculture's (USDA) Dietary Guidelines calling for significant cuts in daily sugar intake," said Dr. John Fry, an internationally acknowledged expert on high potency sweeteners.

Extensive sensory studies

Around 100 trained panellists labored over more than two years to characterize each of the most abundant glycosides in stevia leaf. Difference, descriptive, threshold and quantitative panels all played a part. As well as concentration-response relationships for sweetness, for the first time curves for bitterness and liquorice were produced (the latter two being attributes that had negatively impacted earlier stevia sweeteners). The panels went on to look at taste interactions in two-, three- and four-component mixtures.

Sophisticated modelling techniques simplified the enormous compilation of data, allowing the taste of all possible combinations of certain glycosides to be displayed as color-coded pictures. These "maps" highlighted where sweetness was enhanced or undesirable side tastes reduced. Additional "contour plots" revealed glycoside blends that should interact positively. The "finding the sweet spot" chart (see links to access below) shows three such plots, one each for sweetness, bitterness and liquorice, overlaid on each other. The easily-seen highlighted area predicts the glycoside compositions with maximum sweetness intensity and minimum side tastes.

"The beauty of this technique is that the best candidate blends jump out at you, where it could take years of trial-and-error work to stumble on them by accident," said Dr Fry.

Synergistic blends performed better than pure glycosides

The predicted blends were then created from pure glycosides and re-tested to confirm their outstanding performance in foods and beverages. One of the most important results of this research was that synergistic blends kept taste quality while allowing a 75 percent reduction in sugar. This compares with around 50 percent that was the maximum achievable with pure Reb A in typical carbonated beverages.

Alternative approach concurs

Elsewhere, other researchers found that the optimized blend of glycosides identified by a design of experiment platform outperformed Reb A, with the deep sugar reduced chocolate milk and no sugar added yogurt performing best with the optimized blends. These blend solutions both showed a significant improvement in taste compared to the single glycoside, Reb A.
For more about the study and for access to available data and charts, visit the International Stevia Council or the Calorie Control Council.

SOURCE: International Stevia Council

Kellen Communications - NY

Related Mathematical Model Articles:

How big brains evolved could be revealed by new mathematical model
A new mathematical model could help clarify what drove the evolution of large brains in humans and other animals, according to a study published in PLOS Computational Biology.
'Field patterns' as a new mathematical object
University of Utah mathematicians propose a theoretical framework to understand how waves and other disturbances move through materials in conditions that vary in both space and time.
Mathematical model limits malaria outbreaks
Mathematical models can effectively predict and track malaria transmission trends, ultimately quantifying the efficiency of various treatment and eradication strategies in high-risk regions.
Scientists create first viable mathematical model of a key anti-Salmonella defense system
Scientists have created the first validated mathematical model of an important cellular defense mechanism against the bacterium Salmonella, according to a new study in PLOS Computational Biology.
Mathematical algorithms calculate social behavior
For a long time, mathematical modelling of social systems and dynamics was considered in the realm of science fiction.
Researchers create first 3-D mathematical model of uterine contractions
By studying the electric activity that causes uterine contractions in pregnant women, researchers at Washington University in St.
Exploring the mathematical universe
A team of more than 80 mathematicians from 12 countries has begun charting the terrain of rich, new mathematical worlds, and sharing their discoveries on the Web.
New mathematical model challenges aggressive antibiotic treatments
Antibiotic resistance is one of the most challenging problems in modern medicine.
A mathematical advance in describing waves
Two UB mathematicians have published a new paper that advances the art -- or shall we say, the math -- of describing a wave.

Related Mathematical Model Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".